1、拿出一本數(shù)學教課書,和一只筆,提問:哪個重有些?2、肯定學生的回答,并讓學生“掂一掂”,然后讓學生說說有什么樣的感覺。3、從剛才的實踐得出結論:物體有輕有重。板書課題。二、觀察、操作領悟新知1、出示主題掛圖,物體的輕重的計量。觀察主題掛圖。(1、)請同學們觀察一下,這幅圖畫的是什么?(2、)這幅圖中的小朋友和阿姨在說什么?(3、)前幾天,老師讓大家廣泛收集、調查我們日常生活中常見物品的質量,我們現(xiàn)在來交流以下好嗎?表示物品有多重,可以用克和千克單位來表示。(4、)在學生說的同時,老師拿出有準備的東西展示。
解析:先利用正比例函數(shù)解析式確定A點坐標,然后觀察函數(shù)圖象得到,當1<x<2時,直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點坐標為(1,2),∴當x>1時,2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結:本題考查了一次函數(shù)與一元一次不等式的關系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點的橫坐標所構成的集合.三、板書設計1.通過函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關系本課時主要是掌握運用一次函數(shù)的圖象解一元一次不等式,在教學過程中采用講練結合的方法,讓學生充分參與到教學活動中,主動、自主的學習.
解析:(1)根據(jù)題設條件,求出等量關系,列一元一次方程即可求解;(2)根據(jù)題設中的不等關系列出相應的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設計一元一次不等式與一次函數(shù)關系的實際應用分類討論思想、數(shù)形結合思想本課時結合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調動了學生的思考能力,為后面的學習打下基礎.
1、認真讀課文,邊讀邊想課文每個自然段都寫了什么,給課文劃分段落。2、學生交流段落劃分,說明分段理由。3、教師對照板書進行小結:這篇課文思路特別明晰,作者開門見山提出自己的觀點,明確指出“真理誕生于一百個問號之后”這句話本身就是“真理”,然后概括地指出在千百年來的科學技術發(fā)展史上,那些定理、定律、學說都是在發(fā)現(xiàn)者、創(chuàng)造者解答了“一百個問號之后”才獲得的,由此引出科學發(fā)展史上的三個有代表性的確鑿事例,之后對三個典型事例作結,強調這三個事例“都是很平常的事情”,卻從中發(fā)現(xiàn)了真理,最后指出科學發(fā)現(xiàn)的“偶然機遇”只能給有準備的人,而不會給任何一個懶漢。
知識與技能目標:1. 能正確說出三元一次方程(組)及其解的概念,能正確判別一組數(shù)是否是三元一次方程(組)的解;2. 會根據(jù)實際問題列出簡單的三元一次方程或三元一次方程組。過程與方法目標:1. 通過加深對概念的理解,提高對“元”和“次”的認識。2. 能夠逐步培養(yǎng)類比分析和歸納概括的能力,了解辯證統(tǒng)一的思想。情感態(tài)度與價值觀目標:通過對實際問題的分析,使學生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型,培養(yǎng)學生良好的數(shù)學應用意識。
教學重點:1.比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響2.分析區(qū)域不同發(fā)展階段地理環(huán)境的影響教學難點:1.區(qū)域的特征2.以兩個區(qū)域為例,比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響教具準備:有關掛圖等、自制圖表等教學方法:比較法、案例分析法、圖示法等教學過程:一、區(qū)域1.概念:區(qū)域是地球表面的空間單位,它是人們在地理差異的基礎上,按一定的指標和方法劃分出來的。2.特征:(1)區(qū)域具有一定的區(qū)位特征:不同的區(qū)域,自然環(huán)境有差異,人類活動也有差異。同一區(qū)域,區(qū)域內部的特定性質相對一致,如濕潤區(qū)的多年平均降水量都在800毫米以上。但自然環(huán)境對人類活動的影響隨著其他條件的變化而不同。(2)具有一定的面積、形狀和邊界。①有的區(qū)域的邊界是明 確的,如行政區(qū);②有的區(qū)域的邊界具有過渡性質,如干濕地區(qū)。
練習:現(xiàn)在你能解答課本85頁的習題3.1第6題嗎?有一個班的同學去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個班共多少同學?小結提問:1、今天你又學會了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關系又有何共同特點?學生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(等式的性質1)合并(分配律)系數(shù)化為1(等式的性質2)表示同一量的兩個不同式子相等作業(yè):1、 必做題:課本習題2、 選做題:將一塊長、寬、高分別為4厘米、2厘米、3厘米的長方體橡皮泥捏成一個底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)
故直線l2對應的函數(shù)關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結:此題在待定系數(shù)法的應用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數(shù)的表達式.通過教學,進一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.
(3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結:將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應用題把一批圖書分給七年級某班的同學閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學生?解析:根據(jù)實際書的數(shù)量可得相應的等量關系:3×學生數(shù)量+20=4×學生數(shù)量-25,把相關數(shù)值代入即可求解.解:設這個班有x個學生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結:列方程解應用題時,應抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關系的詞語,以便從中找出合適的等量關系列方程.
方法總結:解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程再求解.探究點三:工程問題一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任務,剩下的工程由乙隊完成,問乙隊還需幾天才能完成?解析:首先設乙隊還需x天才能完成,由題意可得等量關系:甲隊干三天的工作量+乙隊干(x+3)天的工作量=1,根據(jù)等量關系列出方程,求解即可.解:設乙隊還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊還需13天才能完成.方法總結:找到等量關系是解決問題的關鍵.本題主要考查的等量關系為:工作效率×工作時間=工作總量,當題中沒有一些必須的量時,為了簡便,應設其為1.三、板書設計“希望工程”義演題目特點:未知數(shù)一般有兩個,等量關系也有兩個解題思路:利用其中一個等量關系設未知數(shù),利用另一個等量關系列方程
從而為列方程找等量關系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學生自己設計表格為討論的得出起到輔助作用.2.相信學生并為學生提供充分展示自己的機會本節(jié)課的設計中,通過學生多次的動手操作活動,引導學生進行探索,使學生確實是在舊知識的基礎上探求新內容,探索的過程是沒有難度的任何學生都會動手操作,每個學生都有體會的過程,都有感悟的可能,這種形式讓學生切身去體驗問題的情景,從而進一步幫助學生理解比較復雜的問題,再把實際問題抽象成數(shù)學問題.3.注意改進的方面本節(jié)課由于構題新穎有趣,所以一開始就抓住了學生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學生發(fā)表自己的想法較多,使得教學時間不能很好把握,導致課堂練習時間緊張,今后予以改進.
1:甲、乙、丙三個村莊合修一條水渠,計劃需要176個勞動力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個村莊各派多少個勞動力?2:某校組織活動,共有100人參加,要把參加活動的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問這兩組人數(shù)各有多少人?目的:檢測學生本節(jié)課掌握知識點的情況,及時反饋學生學習中存在的問題.實際活動效果:從學生做題的情況看,大部分學生都能正確地列出方程,但其中一部分人并不能有意識地用“列表格”法來分析問題,因此,教師仍需引導他們能學會用“列表格”這個工具,有利于以后遇上復雜問題能很靈活地得到解決.六、歸納總結:活動內容:學生歸納總結本節(jié)課所學知識:1. 兩個未知量,兩個等量關系,如何列方程;2. 尋找中間量;3. 學會用表格分析數(shù)量間的關系.
解:設截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結:圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
(4)假如你是110指揮中心的調度員,描述在接到報警電話到指揮警車前往出事地點的工作程序。點撥:接警→確認出事地點的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達)的巡警車→通知該巡警車。(5)由此例推想,地理信息技術還可以應用于城市管理的哪些部門中?點撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護、物流等部門,都可利用地理信息技術?!菊n堂小結】現(xiàn)代地理學中,3S技術學科的發(fā)展與應用,日益成為地理學前沿科學研究的重要領域,并成為地理學服務于社會生產(chǎn)的主要途徑,現(xiàn)在3S技術已經(jīng)廣泛應用于社會的各個領域。它們三者既有分工又有聯(lián)系。遙感技術主要用于地理信息數(shù)據(jù)的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對地理信息數(shù)據(jù)的管理、更新、分析等。
為城市居民提供休養(yǎng)生息的場所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請同學講解高級住宅區(qū)與低級住宅區(qū)的差別(學生答)(教師總結)(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門占地面積很小,或者布局分散,形成不了相應的功能 區(qū)。(教師提問)我們把城市功能區(qū)分了好幾種,比如說住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒有其他的功能了呢?(學生回答)不是(教師總結)不是的。我們說的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請看書上的活動題。
地質年代可分為相對年代和絕 對年齡(或同位素年齡)兩種。相對地質年代是指巖石和地層之間的相對新老關系和它們的時代順序。地質學家和古生物學家根據(jù)地層自然形成的先后順序,將地層分為5代12紀。即早期的太古代和元古代(元古代 在中國含有1個震旦紀),以后的古生代、中生代和新生代。古生代分為寒武紀、奧陶紀、志留紀、泥盆紀、石炭紀和二疊紀,共7個紀;中生代分為三疊紀、侏羅紀和白堊紀,共3個紀;新生代只有第三紀、第四紀兩個紀。在各個不同時期的地層里,大都保存有古代動、植物的標準化石。各類動、植物化石出現(xiàn)的早晚是有一定順序的,越是低等的,出現(xiàn)得越早,越是高等的,出現(xiàn)得越晚。絕對年齡是根據(jù)測出巖石中某種放射性元素及其蛻變產(chǎn)物的含量而計算出巖石的生成后距今的實際年 數(shù)。越是老的巖石,地層距今的年數(shù)越長。
教學目標1.知識與技能目標:結合實例理解影響工業(yè)區(qū)位選擇的因素。聯(lián)系實際理解工業(yè)區(qū)位的發(fā)展變化。理解環(huán)境對工業(yè)區(qū)位的影響。2.過程與方法目標:利用圖表,分析影響 工業(yè)區(qū)位,培養(yǎng)學生應用基礎知識及讀圖分析能力。了解本地工業(yè)發(fā)展情況,培養(yǎng)學生的分析能力。3.情感態(tài)度價值觀:通過對工業(yè)區(qū)位因素的學習,激發(fā)學生探究地理問題的興趣。由環(huán)境對工業(yè)區(qū)位選擇的影響,培養(yǎng)學生的環(huán)保意識,樹立工業(yè)發(fā)展必須走可持續(xù)發(fā)展之路的思想。教學重點1影響工業(yè)區(qū)位的主要因素;2.運用工業(yè)區(qū)選擇的基本原理對工廠進行合理的區(qū)位選擇。教學難點 判斷影響某個工廠區(qū)位的主導因素及其合理布局。教學方法 案例分析法、對比分析法、讀圖分析法、探究法教學用具 多媒體課件,圖表及補充材料課堂類型
環(huán)境問題 是伴著人口問題、資源問題和發(fā)展問題產(chǎn)生。本質是發(fā)展問題 ,可持續(xù)發(fā)展。6分析可持續(xù)發(fā)展的概念、內涵和 原則?可持續(xù)發(fā)展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當代人的需求,而又不損害后代人滿足其需求的能力。可持續(xù)發(fā)展的內涵:生態(tài)持續(xù)發(fā)展 ,發(fā)展的基礎;經(jīng)濟持續(xù)發(fā)展,發(fā)展條件;社會持續(xù)發(fā)展,發(fā)展目的。可持續(xù)發(fā)展的原則:公平性原則——代內、代際、人與物、國家與地區(qū)之間;持續(xù)性原則——經(jīng)濟活動保持在資源環(huán)境承載力之內;共同性原則— —地球是一個整體。【總結新課】可持續(xù)發(fā) 展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當代人的需求,而又不損害后代人滿足其需求的能力??沙掷m(xù)發(fā)展的內涵:生態(tài)持續(xù)發(fā)展,發(fā)展的基礎;經(jīng)濟持續(xù)發(fā)展,發(fā)展條件;社會持續(xù)發(fā)展,發(fā)展目的。
三、影響區(qū)域環(huán)境說明:環(huán)境是旅游業(yè)的基礎,旅游對環(huán)境保護具有促進作用。世界上很多國家在發(fā)展旅游業(yè)的同時,都很重視對旅游資源和環(huán)境的保護,以實現(xiàn)旅游業(yè)的可持續(xù)發(fā)展。旅游業(yè)的發(fā)展對環(huán)境也有消極作用,如果旅游與環(huán)境的關系不處理好,環(huán)境也會朝著惡化的方向發(fā)展。圖1.10古建修復圖1.10對比顯示古建筑修復前后景觀的變化,說明旅游業(yè)的發(fā)展有利于文物古跡和古建筑的保護。討論:1.列舉旅游業(yè)發(fā)展有利于環(huán)境的措施。提示:建立各種自然保護區(qū)、申報歷史文物保護單位等措施都有利于保護旅游環(huán)境。2.舉例說明旅游對環(huán)境的消極作用。提示:旅游對環(huán)境的消極作用主要表現(xiàn)在:由于對旅游資源開發(fā)建設不當或失誤,使生態(tài)環(huán)境惡化;由于大量游客的涌入,排放的各類廢棄物超過了環(huán)境自凈能力而造成環(huán)境污染;由于大量游客的接觸或不文明行為引起的對風景、文物的破壞等。
(四)實例探究☆力和運動的關系1、一個物體放在光滑水平面上,初速為零,先對物體施加一向東的恒力F,歷時1秒,隨即把此力改變?yōu)橄蛭?,大小不變,歷時1秒鐘,接著又把此力改為向東,大小不變,歷時1秒鐘,如此反復只改變力的方向,共歷時1分鐘,在此1分鐘內A.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置之東B.物體時而向東運動,時而向西運動,在1分鐘末靜止于初始位置C.物體時而向東運動,時而向西運動,在1分鐘末繼續(xù)向東運動D.物體一直向東運動,從不向西運動,在1分鐘末靜止于初始位置之東☆牛頓運動定律的應用2、用30N的水平外力F,拉一靜止放在光滑的水平面上質量為20kg的物體,力F作用3秒后消失,則第5秒末物體的速度和加速度分別是A.v=7.5m/s,a=l.5m/s2B.v=4.5m/s,a=l.5m/s2C.v=4.5m/s,a=0D.v=7.5m/s,a=0