Finally, after finishing the task above, the teacher is expected to instruct students to work in groups to finish the following project:Speaking ProjectWhat event or activity would you like to invite your friend to? Make a conversation with a partner.Ski Race: Zhangjiakou, a beautiful city in northern China, will host the Youth Ski Race in December.Track Meet: a great event for track –and –field lovers on 26 October.Gym Class: come and work out at a gym! You can make it.Part 2: Listening and Talking:The teacher is advised to talk with their new students about the related topic: Boys and girls , what do you think of sportsmanship? Let’s listen and find out:Play the listening and match each opinion with the right speaker. Who do you agree with? Why?Cao Jing _____________ Lily _____________ Max _____________A. An athlete should do his/her best to win.B. The girl should stop and help the other girl. Good sportsmanship is more important than wining!C. An athlete should think about honor and his/her fans if he/she is competing for his/her country.Listen again and circle the expressions that you hear in the conversation.
【教材分析】This teaching period mainly deals with the grammar: tag questions.This period carries a considerable significance to the cultivation of students’ spoken English. The teacher is expected to enable students to master this period thoroughly and consolidate the knowledge by doing some exercise of good quality.【教學(xué)目標(biāo)與核心素養(yǎng)】1. Get students to have a good understanding of the basic usages of tag questions.2. Enable students to use the basic phrases structures flexibly.3. Develop students’ speaking and cooperating abilities.4. Strengthen students’ great interest in grammar learning.【教學(xué)重難點(diǎn)】1. How to enable students to have a good understanding of the basic usages of tag questions.2. How to enable students to use the basic usages of tag questions flexibly.【教學(xué)過(guò)程】Step1: 語(yǔ)法自主探究一、基本組成方法1.肯定式陳述部分+否定附加疑問(wèn)部分(前肯后否) You often play badminton, don’t you? 你經(jīng)常打羽毛球,是嗎?You are going to the gym with me, aren’t you?你要和我一起去健身房,是嗎?She’s been to shanghai before, hasn’t she? 她以前去過(guò)上海,是嗎?2.否定式陳述部分+肯定附加疑問(wèn)部分(前否后肯) It isn't a beautiful flower, is it? 那不是美麗的花,是嗎?You didn't go skating yesterday, did you? 你昨天沒(méi)去滑冰,是嗎?They can’t finish it by Friday, can they?他們不能在星期五之前完成,是嗎?
一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國(guó)化的三大理論成果。學(xué)習(xí)本框內(nèi)容對(duì)學(xué)生來(lái)講,將有助于他們正確認(rèn)識(shí)馬克思主義,運(yùn)用馬克思主義中國(guó)化的理論成果,分析解決遇到的社會(huì)問(wèn)題。具有很強(qiáng)的現(xiàn)實(shí)指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識(shí),思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時(shí)期,對(duì)一些社會(huì)現(xiàn)象能主動(dòng)思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標(biāo)1.馬克思主義哲學(xué)產(chǎn)生的階級(jí)基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來(lái)源,馬克思主義哲學(xué)的基本特征。2.通過(guò)對(duì)馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問(wèn)題。3.實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問(wèn)題和解決問(wèn)題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動(dòng)中的科學(xué)探索精神和革命批判精神。
2、上海是全國(guó)最大的商業(yè)中心,上海港是全國(guó)最大的港口。商業(yè)中心區(qū)位選擇因素與港口的區(qū)位選擇因素的共性條件是( )A、自然地理?xiàng)l件B、經(jīng)濟(jì)地理?xiàng)l件C、地理位置D、經(jīng)濟(jì)腹地3、中國(guó)政府宣布開(kāi)發(fā)上海浦東的時(shí)間是( )A、1978年B、1985年C、1989年D、1990年4、有關(guān)上海優(yōu)越區(qū)位條件的敘述,錯(cuò)誤的是( )A、長(zhǎng)江三角洲可提供充足的農(nóng)副產(chǎn)品B、是全國(guó)最大的交通樞紐C、是我國(guó)最大城市帶的核心城市D、是我國(guó)面積最大的直轄市5、目前上海市面臨的最主要的人口問(wèn)題是( )A、人口老齡化,青壯年贍養(yǎng)照顧眾多老人負(fù)擔(dān)過(guò)重B、衛(wèi)星城鎮(zhèn)人口比重大C、人口基數(shù)大,自然增長(zhǎng)率高D、人口年齡構(gòu)成輕,生育高峰壓力大6、城市問(wèn)題產(chǎn)生的主要原因是( )A、城市規(guī)模擴(kuò)大B、城市基礎(chǔ)設(shè)施相對(duì)滯后C、城市管理混亂D、城市人口規(guī)模和經(jīng)濟(jì)規(guī)模的迅速擴(kuò)大7、下列可反映上海市的城市問(wèn)題的是( )A、上海市區(qū)人均道路面積略高于北京市區(qū)B、上海市沙塵暴天氣多發(fā)C、上海市許多家庭三代人同室居住D、上海市人均綠地面積稍高于重慶
一、教材分析《哲學(xué)史上的偉大變革》是人教版高中政治必修四第3課第2框的教學(xué)內(nèi)容。二、教學(xué)目標(biāo)1.知識(shí)目標(biāo):馬克思主義哲學(xué)產(chǎn)生的階級(jí)基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來(lái)源馬克思主義哲學(xué)的基本特征馬克思主義中國(guó)化的重大理論成果2.能力目標(biāo):通過(guò)對(duì)馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問(wèn)題。3.情感、態(tài)度和價(jià)值觀目標(biāo):實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問(wèn)題和解決問(wèn)題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動(dòng)中的科學(xué)探索精神和革命批判精神。三、教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):馬克思主義哲學(xué)的基本特征;馬克思主義中國(guó)化的重大理論成果
1、 前提條件:①環(huán)境幾乎一樣的平原地區(qū),人口分布均勻2、 ②區(qū)域的運(yùn)輸條件一致,影響運(yùn)輸?shù)奈┮灰蛩厥蔷嚯x。城市六邊形服務(wù)范圍形成過(guò)程。(理解)a.當(dāng)某一貨物的供應(yīng)點(diǎn)只有少數(shù)幾個(gè)時(shí),為了避免競(jìng)爭(zhēng)、獲取最大利潤(rùn),供應(yīng)點(diǎn)的距離不會(huì)太近,它們的服務(wù)范圍都是圓形的。 b.在利潤(rùn)的吸引下,不斷有新的供應(yīng)點(diǎn)出現(xiàn),原有的服務(wù)范圍會(huì)因此而縮小。這時(shí),該貨物的供應(yīng)處于飽和。每個(gè)供應(yīng)點(diǎn)的服務(wù)范圍仍是圓形的,并彼此相切c.如果每個(gè)供應(yīng)點(diǎn)的服務(wù)范圍都是圓形相切卻不重疊的話,圓與圓之間就會(huì)存在空白區(qū)。這里的消費(fèi)者如果都選擇最近的供應(yīng)點(diǎn)來(lái)尋求服務(wù)的話,空白區(qū)又可以分割咸三部分,分別屬于三個(gè)離其最近的供應(yīng)點(diǎn)。[思考]①圖2.15中城市有幾個(gè)等級(jí)?②找出表示每一等級(jí)六邊形服務(wù)范圍的線條顏色?③敘述不同等級(jí)城市之間服務(wù)范圍及其相互關(guān)系?3、理論基礎(chǔ):德國(guó)南部城市4、意義:運(yùn)用這種理論來(lái)指導(dǎo)區(qū)域規(guī)劃、城市建設(shè)和商業(yè)網(wǎng)點(diǎn)的布局。1、 應(yīng)用——“荷蘭圩田居民點(diǎn)的設(shè)置”。
學(xué)生探究案例:找出不同等級(jí)城市的數(shù)目與城鎮(zhèn)級(jí)別的關(guān)系、城鎮(zhèn)的分布與城鎮(zhèn)級(jí)別的關(guān)系并試著解釋原因。在此基礎(chǔ)上,指導(dǎo)學(xué)生一步步閱讀書上的閱讀材料,首先說(shuō)明這是德國(guó)著名的經(jīng)濟(jì)地理學(xué)家克里斯泰勒對(duì)德國(guó)南部城市等級(jí)體系研究得出的中心地理論,他是在假設(shè)土壤肥力相等、資源分布均勻、沒(méi)有邊界的平原上,交通條件一致、消費(fèi)者收入及需求一致、人們就近購(gòu)買貨物和服務(wù)的情況下得出的理想模式。然后指導(dǎo)學(xué)生閱讀圖2.14下文字說(shuō)明,理解城市六邊形服務(wù)范圍形成過(guò)程。指導(dǎo)學(xué)生讀圖2.15,找出圖中城市的等級(jí)、每一等級(jí)六邊形服務(wù)范圍并敘述不同等級(jí)城市之間服務(wù)范圍及其相互關(guān)系,從而得出不同等級(jí)城市的空間分布規(guī)律,六邊形服務(wù)范圍,層層嵌套的理論模式。給出荷蘭圩田空白圖,讓學(xué)生應(yīng)用上面的理論規(guī)劃設(shè)計(jì)居民點(diǎn)并說(shuō)出理由,再和教材上的規(guī)劃進(jìn)行對(duì)照。然后給出長(zhǎng)三角地區(qū)城市分布圖和各城市人口數(shù),讓學(xué)生對(duì)這些城市進(jìn)行分級(jí),概括每一級(jí)城市的服務(wù)功能、統(tǒng)計(jì)每一等級(jí)城市的數(shù)目以及彼此間的平均距離,總結(jié)城市等級(jí)與服務(wù)范圍、空間分布的關(guān)系?
學(xué)習(xí)方法實(shí)驗(yàn)法、討論法。教學(xué) 媒體投影儀、投影片、巖石標(biāo)本、實(shí)驗(yàn)器具。學(xué)習(xí)過(guò)程一、地球的早期演化和地質(zhì)年代1、思考回答:初生地球 有什么特點(diǎn)?2、【啟發(fā)提問(wèn)】看課本大氣的早期是怎樣演化的?水圈是怎樣形成? 學(xué)生分組討論后回答,相互啟發(fā)補(bǔ)充。3、學(xué)生討論、回答:生命起源的過(guò)程怎樣?大氣又是怎樣繼續(xù)演化的?二、記錄地球歷史 的“書頁(yè) ”——巖層和化石1、學(xué)生討論 、回答:地球上巖漿巖、變質(zhì)巖、沉積巖三種巖石的形成和特點(diǎn)2 5、【啟發(fā)提問(wèn)】化石是怎樣形成的?他有什么作用?三、地質(zhì)年代1、【啟發(fā)提問(wèn)】地質(zhì)年代劃分依據(jù)是什么?2、學(xué)生討論、總結(jié)。各階段的特點(diǎn)?學(xué)后記:
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問(wèn)題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問(wèn)題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說(shuō)出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
(2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤(rùn)=每件的利潤(rùn)×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開(kāi)口向下,對(duì)稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤(rùn)的計(jì)算方法,即利潤(rùn)=每件的利潤(rùn)×銷售的件數(shù),是解決問(wèn)題的關(guān)鍵.
解析:正多邊形的邊心距、半徑、邊長(zhǎng)的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點(diǎn)D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測(cè)出弦BC(或AC,AB)的長(zhǎng);(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計(jì)算,一般是過(guò)中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實(shí)際運(yùn)用如圖①,有一個(gè)寶塔,它的地基邊緣是周長(zhǎng)為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問(wèn)塑像底座的半徑最大是多少?
解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長(zhǎng)和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過(guò)復(fù)習(xí)圓的周長(zhǎng)、圓的面積公式,探索n°的圓心角所對(duì)的弧長(zhǎng)l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問(wèn)題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長(zhǎng)度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長(zhǎng)的14,所以鐵軌的長(zhǎng)度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長(zhǎng)呢?二、合作探究探究點(diǎn)一:弧長(zhǎng)公式【類型一】 求弧長(zhǎng)如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺(jué)效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長(zhǎng)度為()
(8)物價(jià)部門規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤(rùn)?最大利潤(rùn)為多少萬(wàn)元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過(guò)200萬(wàn)元,請(qǐng)你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場(chǎng)經(jīng)營(yíng)某種品牌的童裝,購(gòu)進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場(chǎng)調(diào)查,銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,不高于78元,那么商場(chǎng)銷售該品牌童裝獲得的最大利潤(rùn)是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場(chǎng)要完成不少于240件的銷售任務(wù),那么商場(chǎng)銷售該品牌童裝獲得的最大利潤(rùn)是多少元?
解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問(wèn)題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)問(wèn)題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
③設(shè)每件襯衣降價(jià)x元,獲得的利潤(rùn)為y元,則定價(jià)為 元 ,每件利潤(rùn)為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時(shí)有最大利潤(rùn),最大利潤(rùn)為多少元?比較以上兩種可能,襯衣定價(jià)多少元時(shí),才能使利潤(rùn)最大?☆ 歸納反思 ☆總結(jié)得出求最值問(wèn)題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過(guò)配方法求出二次函數(shù)的最值。☆ 達(dá)標(biāo)檢測(cè) ☆ 1、用長(zhǎng)為6m的鐵絲做成一個(gè)邊長(zhǎng)為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長(zhǎng)為 時(shí)矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場(chǎng)調(diào)查表明:當(dāng)每輛車的日租金為300元時(shí)可全部租出;當(dāng)每輛車的日租金提高10元時(shí),每天租出的汽車會(huì)相應(yīng)地減少4輛.問(wèn)每輛出租車的日租金提高多少元,才會(huì)使公司一天有最多的收入?
如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對(duì)應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問(wèn)題常常考慮此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識(shí)靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對(duì)圓周角的概念和“同弧所對(duì)的圓周角相等”這一性質(zhì)較容易掌握,理解起來(lái)問(wèn)題也不大,而對(duì)圓周角與圓心角的關(guān)系理解起來(lái)則相對(duì)困難,因此在教學(xué)過(guò)程中要著重引導(dǎo)學(xué)生對(duì)這一知識(shí)的探索與理解.還有些學(xué)生在應(yīng)用知識(shí)解決問(wèn)題的過(guò)程中往往會(huì)忽略同弧的問(wèn)題,在教學(xué)過(guò)程中要對(duì)此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
2. 理解詞:眉開(kāi)眼笑、調(diào)皮。3. 在欣賞、分析過(guò)程中感受故事的幽默、詼諧。重點(diǎn):要求理解鼠媽媽教鼠寶寶學(xué)外語(yǔ)的原因。難點(diǎn):鼠寶寶從不愿學(xué)的動(dòng)態(tài)表現(xiàn)到肯學(xué)的思想轉(zhuǎn)變過(guò)程。環(huán)境創(chuàng)設(shè)、材料準(zhǔn)備:圖片設(shè)計(jì)思路:這個(gè)故事生動(dòng)有趣,詼諧幽默,能激起幼兒的學(xué)習(xí)興趣。一開(kāi)始以照片的形式出現(xiàn),吸引了幼兒的注意力,讓幼兒加深了對(duì)鼠寶寶一家的喜愛(ài)之情。接著一系列的提問(wèn),例:“第二個(gè)生的叫什么?”發(fā)展了幼兒 <BR><P></P>的想象力和發(fā)展性思維能力,接著引導(dǎo)幼兒進(jìn)入下一環(huán)節(jié),當(dāng)故事將到一半時(shí)停止講述,給幼兒留下了遐想的空間,讓幼兒運(yùn)用已有的知識(shí)經(jīng)驗(yàn)來(lái)理解“外語(yǔ)”一詞,通過(guò)懸念式的提問(wèn),激發(fā)幼兒的好奇性心和學(xué)習(xí)欲望。聽(tīng)完故事,通過(guò)感受故事中有趣的詞句,對(duì)幼兒的傾聽(tīng)能力提出了要求。接著教師的提問(wèn)“為什么鼠寶寶一開(kāi)始不愿學(xué)外語(yǔ),可后來(lái)卻搶著說(shuō)‘學(xué)外語(yǔ)真好呢’”?這個(gè)問(wèn)題具有較強(qiáng)的開(kāi)發(fā)性,幼兒可以從多個(gè)角度來(lái)回答,充分發(fā)展了幼兒的思維。同時(shí),很自然地滲透了品德教育,避免了空洞的說(shuō)教。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。