2、培養(yǎng)幼兒的動手能力、審美能力和創(chuàng)造性思維能力。環(huán)境創(chuàng)設(shè)一、信息資源的準(zhǔn)備1、收集各種扇子實(shí)物,互相介紹自己的扇子,尋找各種扇子的異同,啟發(fā)幼兒按大小、形狀、制作材料(綢面、藤面、葵葉、鵝毛、紙、木等)、扇面圖案進(jìn)行分類。2、家長與孩子共同收集跟扇子有關(guān)的故事、錄像、圖書、圖片等資料,鼓勵(lì)幼兒將查找途徑、內(nèi)容用圖表形式記錄下來(見圖一)。3、在室內(nèi)布置有關(guān)幼兒參觀商場、購買扇子的照片,同時(shí)把幼兒圍繞扇子所提的問題及如圖一的記錄表展示在墻面上。二、工具與材料的準(zhǔn)備1、多用組合架。用鐵絲做一個(gè)架子固定在墻上,將相關(guān)的工具與部分裝飾用品串掛在組合架上,如線團(tuán)、包裝紙等。在剪去瓶口的礦泉水瓶、酸奶瓶內(nèi)插裝畫筆、尺子、鉗子、小鋸子、剪刀等工具。2、趣味廢紙箱(見圖三)。既可美化活動區(qū),又能培養(yǎng)幼兒的環(huán)保意識。如將蛋糕盒縱向裁半,將其裝飾成孩子頭像或其他形象,穿繩懸掛在區(qū)角墻壁上。也可直接將經(jīng)過裝飾的方形紙箱放在區(qū)角。3、制作材料及方法(見圖四)。有待裝飾的扇面和扇頁,白志、色紙與廢舊掛歷紙,有孔的薄木片、薄竹片條等,啟發(fā)幼兒按自己的意愿選擇材料進(jìn)行制作,作品完成后可用各色絲線飾扇把。
2、提高幼兒美的欣賞能力。二、活動準(zhǔn)備:凡高、米羅、修拉、畢加索、蒙德里安的畫各4幅、畫家頭像各一幅、小紅心17個(gè)、網(wǎng)架2個(gè)三、活動過程:(一)以到藝術(shù)博物館參觀引入,引導(dǎo)幼兒結(jié)伴在作品前自由欣賞。1、幼兒自由欣賞、交談。2、幼兒為自己喜歡的畫貼上小紅心。師引導(dǎo)幼兒憑借自己對畫家風(fēng)格和特點(diǎn)的印象來
[活動準(zhǔn)備] 小螞蟻若干、放大鏡、紙盒、白紙、彩色筆?! 。刍顒舆^程] 一、看一看?! ⊥拕∏榫氨硌荨稕]有觸角的小螞蟻》 教師帶幼兒上前扶起正在哭的小螞蟻:“小螞蟻,你怎么了?” 小螞蟻哭著說:“我找不到回家的路了。我出來找吃的,怎么也找不到,走路也弄不清方向,我又累又餓,還撞了一身的傷。我想回去,可繞來繞去總找不到家?!薄 √骄康膯栴}:螞蟻的觸角有什么作用? 二、幼兒討論。(1)沒有觸角就不漂亮了。(2)沒有觸角就找不到家了。
活動目的:通過兩個(gè)圖案設(shè)計(jì),一個(gè)是讓學(xué)生獨(dú)立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進(jìn)一步鞏固應(yīng)用;另一個(gè)是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進(jìn)一步培養(yǎng)學(xué)生幾何語言表達(dá)能力,并積累尺規(guī)作圖的活動經(jīng)驗(yàn)?;顒幼⒁馐马?xiàng):根據(jù)課堂時(shí)間安排,可靈活進(jìn)行處理,既可以作為本節(jié)課的實(shí)際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價(jià)值的數(shù)學(xué)。四、 教學(xué)設(shè)計(jì)反思1.利用現(xiàn)實(shí)情景引入新課,既能體現(xiàn)數(shù)學(xué)知識與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識。而在了解基礎(chǔ)知識以后,將其進(jìn)行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會知識的漸進(jìn)發(fā)展過程,增強(qiáng)思維能力的培養(yǎng)。同時(shí),在整個(gè)探究過程中,怎樣團(tuán)結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個(gè)途徑。
解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識,課堂教學(xué)內(nèi)容以學(xué)生動手操作為主,在學(xué)生動手操作的過程中要鼓勵(lì)學(xué)生大膽動手,培養(yǎng)學(xué)生的動手能力和書面語言表達(dá)能力
解析:整個(gè)陰影部分比較復(fù)雜和分散,像此類問題通常使用割補(bǔ)法來計(jì)算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使整個(gè)陰影部分割補(bǔ)成半個(gè)正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個(gè)面積可以計(jì)算的規(guī)則圖形.三、板書設(shè)計(jì)1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
項(xiàng)目開工只是開端,加快推進(jìn)、建成投產(chǎn)才是關(guān)鍵。全市上下要進(jìn)一步強(qiáng)化“項(xiàng)目為王”理念,堅(jiān)持項(xiàng)目工地就是陣地、現(xiàn)場就是考場、進(jìn)度就是尺度,一切圍著項(xiàng)目轉(zhuǎn),緊緊盯著項(xiàng)目干,以嚴(yán)的要求、實(shí)的作風(fēng)、優(yōu)的服務(wù)做保障、強(qiáng)支撐。要高強(qiáng)度推進(jìn)項(xiàng)目,各縣市區(qū)、市直部門要堅(jiān)持一線辦公、一線協(xié)調(diào)、一線督促,調(diào)配資源,集中攻堅(jiān),全力保障項(xiàng)目建設(shè)。各建設(shè)單位要堅(jiān)持安全第一、質(zhì)量為先,爭分奪秒,爭取項(xiàng)目早建成、早投產(chǎn)、早達(dá)效。要高水平服務(wù)項(xiàng)目,切實(shí)優(yōu)化提升營商環(huán)境,主動對接服務(wù),提升辦事效率,合力解決難題,當(dāng)好“店小二”、做好“服務(wù)員”
一、活動目的養(yǎng)成教育目標(biāo):能獨(dú)立完成自己的作品。認(rèn)知:幼兒的動手操作能力、想象力及欣賞力。技能:復(fù)習(xí)鞏固撕貼技能。情感:喜歡參與美工活動?! ?.人格;教育幼兒不亂丟碎紙,提高幼兒的環(huán)保意識。二、活動準(zhǔn)備各種撕貼材料若干,用舊掛歷做成的半成品(拖鞋、帽子……)
(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊(duì)勝1場得2分,負(fù)1場得1分。某隊(duì)在10場比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場數(shù)分別是多少?方法一:(利用之前的知識,學(xué)生自己列出并求解)解:設(shè)剩X場,則負(fù)(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場,負(fù)Y場。根據(jù):勝的場數(shù)+負(fù)的場數(shù)=總場數(shù) 勝場積分+負(fù)場積分=總積分得到:X+Y=10 2X+Y=16
設(shè)計(jì)意圖:最后是當(dāng)堂訓(xùn)練,目標(biāo)檢測,這一環(huán)節(jié)要盡量讓學(xué)生獨(dú)立完成,使訓(xùn)練高效,在學(xué)生訓(xùn)練時(shí)教師要巡回輔導(dǎo),重點(diǎn)關(guān)注課堂表現(xiàn)不太突出的學(xué)生,由于本課時(shí)內(nèi)容多,訓(xùn)練貫穿課堂始終,加上不能使用計(jì)算器,因此課堂節(jié)奏難于加快,所以當(dāng)堂訓(xùn)練的時(shí)間預(yù)估不足。四、教學(xué)思考1.教材是素材,本節(jié)課對教材進(jìn)行了全新的處理和大膽的取舍,力求創(chuàng)設(shè)符合學(xué)生實(shí)際的問題情境,讓學(xué)生經(jīng)歷從實(shí)際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學(xué)生的應(yīng)用意識及分析問題解決問題的能力,培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力及轉(zhuǎn)化的思維方法。2.充分相信學(xué)生并為學(xué)生提供展示自己的機(jī)會,課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及小組交流、演板等形式,幫助學(xué)生形成積極主動的求知態(tài)度。
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實(shí)驗(yàn)次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗(yàn)可以看到:當(dāng)重復(fù)實(shí)驗(yàn)的次數(shù)大量增加時(shí),事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實(shí)驗(yàn),用一個(gè)事件發(fā)生的頻率來估計(jì)這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動員投籃5次, 投中4次,能否說該運(yùn)動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計(jì)抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個(gè)農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計(jì),平均出生1千萬頭牛才會有1頭是白色的,由此估計(jì)出生一頭奶牛為白色的概率為多少?
四、教學(xué)過程分析為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排了以下教學(xué)環(huán)節(jié):(一)復(fù)習(xí)導(dǎo)入主要復(fù)習(xí)一下三種統(tǒng)計(jì)圖,為接下來介紹三種統(tǒng)計(jì)圖的特點(diǎn)及根據(jù)實(shí)際問題選取適當(dāng)?shù)慕y(tǒng)計(jì)圖做好知識準(zhǔn)備。(二)問題探究選取課本上“小華對1992~2002年同學(xué)家中有無電視機(jī)及近一年來同學(xué)在家看電視的情況”的3個(gè)調(diào)查項(xiàng)目,進(jìn)而設(shè)計(jì)3個(gè)探究問題從而加深學(xué)生對每一種統(tǒng)計(jì)圖的進(jìn)一步認(rèn)識,至此用自己的語言總結(jié)出每一種統(tǒng)計(jì)圖的特點(diǎn)。(三)實(shí)踐練兵這一環(huán)節(jié)通過2個(gè)實(shí)際問題的設(shè)計(jì),通過學(xué)生對問題的分析、討論,使學(xué)生認(rèn)識到適當(dāng)選取統(tǒng)計(jì)圖有助于幫助人們?nèi)ジ焖?、更?zhǔn)確地獲取信息。(四)課堂小結(jié)總結(jié)這一節(jié)課所學(xué)的重點(diǎn)知識,這部分主要是讓學(xué)生自己去總結(jié),看看這節(jié)課自己有哪些收獲。(五)作業(yè)布置進(jìn)一步鞏固本節(jié)課所學(xué)的知識,達(dá)到教學(xué)效果。以上就是我對這節(jié)課的見解,不足之處還望批評和指正。
一、教材分析軸對稱是現(xiàn)實(shí)生活中廣泛存在的一種現(xiàn)象,本章內(nèi)容定位于生活中軸對稱現(xiàn)象的分析,全章內(nèi)容按照“直觀認(rèn)識——探索性質(zhì)——簡單圖形——圖案設(shè)計(jì)”這一主線展開,而這節(jié)課作為全章的最后一節(jié),主要作用是將本章內(nèi)容進(jìn)行回顧和深化,使學(xué)生通過折疊、剪紙等一系列活動對生活中的軸對稱現(xiàn)象由“直觀感受”逐漸過渡到從“數(shù)學(xué)的角度去理解”,最后通過圖案設(shè)計(jì)再將“數(shù)學(xué)運(yùn)用到生活中”。軸對稱是我們探索一些圖形的性質(zhì),認(rèn)識、描述圖形形狀和位置關(guān)系的重要手段之一。在后面的學(xué)習(xí)中,還將涉及用坐標(biāo)的方法對軸對稱刻畫,這將進(jìn)一步深化我們對軸對稱的認(rèn)識,也為“空間與圖形”后繼內(nèi)容的學(xué)習(xí)打下基礎(chǔ)。二、學(xué)情分析學(xué)生之前已經(jīng)認(rèn)識了軸對稱現(xiàn)象,通過扎紙?zhí)剿髁溯S對稱的性質(zhì),并在對簡單的軸對稱圖形的認(rèn)識過程中加深了對軸對稱的理解,但是對生活中的軸對稱現(xiàn)象仍然以“直觀感受”為主。
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學(xué)生,估計(jì)該年級在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計(jì)圖中對應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計(jì)該年級在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個(gè)統(tǒng)計(jì)圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時(shí),由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對應(yīng)的是扇形統(tǒng)計(jì)圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
用四舍五入法將下列各數(shù)按括號中的要求取近似數(shù).(1)0.6328(精確到0.01);(2)7.9122(精確到個(gè)位);(3)47155(精確到百位);(4)130.06(精確到0.1);(5)4602.15(精確到千位).解析:(1)把千分位上的數(shù)字2四舍五入即可;(2)把十分位上的數(shù)字9四舍五入即可;(3)先用科學(xué)記數(shù)法表示,然后把十位上的數(shù)字5四舍五入即可;(4)把百分位上的數(shù)字6四舍五入即可;(5)先用科學(xué)記數(shù)法表示,然后把百位上的數(shù)字6四舍五入即可.解:(1)0.6328≈0.63(精確到0.01);(2)7.9122≈8(精確到個(gè)位);(3)47155≈4.72×104(精確到百位);(4)130.06≈130.1(精確到0.1);(5)4602.15≈5×103(精確到千位).方法總結(jié):按精確度找出要保留的最后一個(gè)數(shù)位,再按下一個(gè)數(shù)位上的數(shù)四舍五入即可.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、歸納、積累等思維過程,從中獲得數(shù)學(xué)知識與技能,體驗(yàn)教學(xué)活動的方法,發(fā)展推理能力,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.
1.會用計(jì)算器求平方根和立方根;(重點(diǎn))2.運(yùn)用計(jì)算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運(yùn)算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點(diǎn)一:利用計(jì)算器進(jìn)行開方運(yùn)算 用計(jì)算器求6+7的值.解:按鍵順序?yàn)椤?+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個(gè)數(shù)時(shí),輸入時(shí)一定要按鍵.解本題時(shí)常出現(xiàn)的錯(cuò)誤是:■6+7=SD,錯(cuò)的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時(shí),對“6+7”進(jìn)行開方,使得計(jì)算的是6+7而不是6+7,從而導(dǎo)致錯(cuò)誤.K探究點(diǎn)二:利用科學(xué)計(jì)算器比較數(shù)的大小利用計(jì)算器,比較下列各組數(shù)的大小:(1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
(1)請估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動過程,進(jìn)一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動過程,進(jìn)一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應(yīng)該進(jìn)多少件西裝?六、課堂小結(jié):盡管隨機(jī)事件在每次實(shí)驗(yàn)中發(fā)生與否具有不確定性,但只要保持實(shí)驗(yàn)條件不變,那么這一事件出現(xiàn)的頻率就會隨著實(shí)驗(yàn)次數(shù)的增大而趨于穩(wěn)定,這個(gè)穩(wěn)定值就可以作為該事件發(fā)生概率的估計(jì)值。七、作業(yè):課后練習(xí)補(bǔ)充:一個(gè)口袋中有12個(gè)白球和若干個(gè)黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計(jì)口袋中黑球的個(gè)數(shù),采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計(jì)口袋中大約有 48 個(gè)黑球。
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.