第三層次:嘗試練習(xí)讓學(xué)生獨(dú)立完成教材117頁的第3題,個(gè)別學(xué)生板演,教師在學(xué)生完成后集體點(diǎn)評(píng),強(qiáng)調(diào)學(xué)習(xí)的難點(diǎn)。第三個(gè)環(huán)節(jié):變式練習(xí),鞏固深化練習(xí)的設(shè)計(jì)要抓基礎(chǔ)知識(shí)與發(fā)展創(chuàng)新能力緊密結(jié)合起來,以達(dá)到發(fā)展思維,形成技能的目標(biāo)。在此環(huán)節(jié)我設(shè)計(jì)了如下練習(xí):1、定位練習(xí)。仿照例3出示類似的兩道應(yīng)用題,要求學(xué)生讀題,畫圖,深入理解題里的數(shù)量關(guān)系,列出數(shù)量關(guān)系式。強(qiáng)化難點(diǎn),形成技能。2、提高題:同來互相編題,互相解答。通過以上練習(xí),促使學(xué)生將新的知識(shí)溶入到已有認(rèn)知結(jié)構(gòu)中,以利于更好的遷移和運(yùn)用。第四個(gè)環(huán)節(jié)課堂作業(yè)反饋信息完成課本練習(xí)二十三第4-7題(三)說“誘思探究”在本節(jié)課的具體體現(xiàn)1、以學(xué)生為主體,教學(xué)中多次引導(dǎo)學(xué)生嘗試練習(xí),引導(dǎo)學(xué)生把舊知與新知進(jìn)行對(duì)比;引導(dǎo)學(xué)生自主探索,親身體驗(yàn),切實(shí)把學(xué)生推向?qū)W習(xí)探索的第一線。體現(xiàn)了“誘思探究”對(duì)當(dāng)代課堂教學(xué)的要求。
2、說說下面每個(gè)百分?jǐn)?shù)的具體含義,是怎么求出來的?(哪兩個(gè)數(shù)相比,把誰看作單位“1”)(1)某種菜籽的出油率是36%。(2)實(shí)際用電量占計(jì)劃用電量的80%。(3)李家今年荔枝產(chǎn)量是去年的120%。二、新授1、根據(jù)數(shù)學(xué)信息提出問題:出示例2的情境圖,讓學(xué)生根據(jù)圖中提供的條件提出用百分?jǐn)?shù)解決的問題。(1)計(jì)劃造林是實(shí)際造林的百分之幾?(2)實(shí)際造林是計(jì)劃造林的百分之幾?(3)實(shí)際造林比計(jì)劃造林增加百分之幾?(4)計(jì)劃早林比實(shí)際造林少百分之幾?2、讓學(xué)生先解決前兩個(gè)問提。解決這類問題要先弄清楚哪兩個(gè)數(shù)相比,哪個(gè)數(shù)是單位“1”,哪一個(gè)數(shù)與單位“1”相比。3、學(xué)生自主解決“實(shí)際早林比計(jì)劃增加了百分之幾”的問題。(1)分析數(shù)量關(guān)系,讓學(xué)生自己嘗試著用線段圖表示出來。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1》5.6.2節(jié) 函數(shù)y=Asin(ωx+φ)的圖象通過圖象變換,揭示參數(shù)φ、ω、A變化時(shí)對(duì)函數(shù)圖象的形狀和位置的影響。通過引導(dǎo)學(xué)生對(duì)函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會(huì)到由簡(jiǎn)單到復(fù)雜、由特殊到一般的化歸思想;并通過對(duì)周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點(diǎn)的突破,讓學(xué)生學(xué)會(huì)抓住問題的主要矛盾來解決問題的基本思想方法;通過對(duì)參數(shù)φ、ω、A的分類討論,讓學(xué)生深刻認(rèn)識(shí)圖象變換與函數(shù)解析式變換的內(nèi)在聯(lián)系。通過圖象變換和“五點(diǎn)”作圖法,正確找出函數(shù)y=sinx到y(tǒng)=Asin(ωx+φ)的圖象變換規(guī)律,這也是本節(jié)課的重點(diǎn)所在。提高學(xué)生的推理能力。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。
一、教學(xué)目標(biāo)(一)知識(shí)教育點(diǎn)使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.(二)能力訓(xùn)練點(diǎn)要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對(duì)比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點(diǎn)通過一個(gè)簡(jiǎn)單實(shí)驗(yàn)引入拋物線的定義,可以對(duì)學(xué)生進(jìn)行理論來源于實(shí)踐的辯證唯物主義思想教育.二、教材分析1.重點(diǎn):拋物線的定義和標(biāo)準(zhǔn)方程.2.難點(diǎn):拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動(dòng)設(shè)計(jì)提問、回顧、實(shí)驗(yàn)、講解、板演、歸納表格.四、教學(xué)過程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運(yùn)動(dòng)軌跡給出拋物線的實(shí)際意義,再利用太陽灶和拋物線型的橋說明拋物線的實(shí)際用途。
教學(xué)目的:理解并熟練掌握正態(tài)分布的密度函數(shù)、分布函數(shù)、數(shù)字特征及線性性質(zhì)。教學(xué)重點(diǎn):正態(tài)分布的密度函數(shù)和分布函數(shù)。教學(xué)難點(diǎn):正態(tài)分布密度曲線的特征及正態(tài)分布的線性性質(zhì)。教學(xué)學(xué)時(shí):2學(xué)時(shí)教學(xué)過程:第四章 正態(tài)分布§4.1 正態(tài)分布的概率密度與分布函數(shù)在討論正態(tài)分布之前,我們先計(jì)算積分。首先計(jì)算。因?yàn)?利用極坐標(biāo)計(jì)算)所以。記,則利用定積分的換元法有因?yàn)?,所以它可以作為某個(gè)連續(xù)隨機(jī)變量的概率密度函數(shù)。定義 如果連續(xù)隨機(jī)變量的概率密度為則稱隨機(jī)變量服從正態(tài)分布,記作,其中是正態(tài)分布的參數(shù)。正態(tài)分布也稱為高斯(Gauss)分布。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 8.4 圓(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)直線與圓的位置關(guān)系有三種(如圖8-21): (1)相離:無交點(diǎn); (2)相切:僅有一個(gè)交點(diǎn); (3)相交:有兩個(gè)交點(diǎn). 并且知道,直線與圓的位置關(guān)系,可以由圓心到直線的距離d與半徑r的關(guān)系來判別(如圖8-22): (1):直線與圓相離; (2):直線與圓相切; (3):直線與圓相交. 介紹 講解 說明 質(zhì)疑 引導(dǎo) 分析 了解 思考 思考 帶領(lǐng) 學(xué)生 分析 啟發(fā) 學(xué)生思考 0 15*動(dòng)腦思考 探索新知 【新知識(shí)】 設(shè)圓的標(biāo)準(zhǔn)方程為 , 則圓心C(a,b)到直線的距離為 . 比較d與r的大小,就可以判斷直線與圓的位置關(guān)系. 講解 說明 引領(lǐng) 分析 思考 理解 帶領(lǐng) 學(xué)生 分析 30*鞏固知識(shí) 典型例題 【知識(shí)鞏固】 例6 判斷下列各直線與圓的位置關(guān)系: ⑴直線, 圓; ⑵直線,圓. 解?、?由方程知,圓C的半徑,圓心為. 圓心C到直線的距離為 , 由于,故直線與圓相交. ⑵ 將方程化成圓的標(biāo)準(zhǔn)方程,得 . 因此,圓心為,半徑.圓心C到直線的距離為 , 即由于,所以直線與圓相交. 【想一想】 你是否可以找到判斷直線與圓的位置關(guān)系的其他方法? *例7 過點(diǎn)作圓的切線,試求切線方程. 分析 求切線方程的關(guān)鍵是求出切線的斜率.可以利用原點(diǎn)到切線的距離等于半徑的條件來確定. 解 設(shè)所求切線的斜率為,則切線方程為 , 即 . 圓的標(biāo)準(zhǔn)方程為 , 所以圓心,半徑. 圖8-23 圓心到切線的距離為 , 由于圓心到切線的距離與半徑相等,所以 , 解得 . 故所求切線方程(如圖8-23)為 , 即 或. 說明 例題7中所使用的方法是待定系數(shù)法,在利用代數(shù)方法研究幾何問題中有著廣泛的應(yīng)用. 【想一想】 能否利用“切線垂直于過切點(diǎn)的半徑”的幾何性質(zhì)求出切線方程? 說明 強(qiáng)調(diào) 引領(lǐng) 講解 說明 引領(lǐng) 講解 說明 觀察 思考 主動(dòng) 求解 思考 主動(dòng) 求解 通過例題進(jìn)一步領(lǐng)會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 50
本人所教的兩個(gè)班級(jí)學(xué)生普遍存在著數(shù)學(xué)科基礎(chǔ)知識(shí)較為薄弱,計(jì)算能力較差,綜合能力不強(qiáng),對(duì)數(shù)學(xué)學(xué)習(xí)有一定的困難。在課堂上的主體作用的體現(xiàn)不是太充分,但是他們能意識(shí)到自己的不足,對(duì)數(shù)學(xué)課的學(xué)習(xí)興趣高,積極性強(qiáng)。 學(xué)生在學(xué)習(xí)交往上表現(xiàn)為個(gè)別化學(xué)習(xí),課堂上較為依賴?yán)蠋煹囊龑?dǎo)。學(xué)生的群體性小組交流能力與協(xié)同討論學(xué)習(xí)的能力不強(qiáng),對(duì)學(xué)習(xí)資源和知識(shí)信息的獲取、加工、處理和綜合的能力較低。在教學(xué)中盡量分析細(xì)致,減少跨度較大的環(huán)節(jié),對(duì)重要的推導(dǎo)過程采用板書方式逐步進(jìn)行,力求讓絕大多數(shù)學(xué)生接受。 1.理解橢圓標(biāo)準(zhǔn)方程的推導(dǎo);掌握橢圓的標(biāo)準(zhǔn)方程;會(huì)根據(jù)條件求橢圓的標(biāo)準(zhǔn)方程,會(huì)根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點(diǎn)坐標(biāo). 2.通過橢圓圖形的研究和標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用。 1.讓學(xué)生經(jīng)歷橢圓標(biāo)準(zhǔn)方程的推導(dǎo)過程,進(jìn)一步掌握求曲線方程的一般方法,體會(huì)數(shù)形結(jié)合等數(shù)學(xué)思想;培養(yǎng)學(xué)生運(yùn)用類比、聯(lián)想等方法提出問題. 2.培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合的思想,進(jìn)一步掌握利用方程研究曲線的基本方法,通過與橢圓幾何性質(zhì)的對(duì)比來提高學(xué)生聯(lián)想、類比、歸納的能力,解決一些實(shí)際問題。 1.通過具體的情境感知研究橢圓標(biāo)準(zhǔn)方程的必要性和實(shí)際意義;體會(huì)數(shù)學(xué)的對(duì)稱美、簡(jiǎn)潔美,培養(yǎng)學(xué)生的審美情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度. 2.進(jìn)一步理解并掌握代數(shù)知識(shí)在解析幾何運(yùn)算中的作用,提高解方程組和計(jì)算能力,通過“數(shù)”研究“形”,說明“數(shù)”與“形”存在矛盾的統(tǒng)一體中,通過“數(shù)”的變化研究“形”的本質(zhì)。幫助學(xué)生建立勇于探索創(chuàng)新的精神和克服困難的信心。
探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時(shí)X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.
二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小組有20名射手,其中1,2,3,4級(jí)射手分別為2,6,9,3名.又若選1,2,3,4級(jí)射手參加比賽,則在比賽中射中目標(biāo)的概率分別為0.85,0.64,0.45,0.32,今隨機(jī)選一人參加比賽,則該小組比賽中射中目標(biāo)的概率為________. 【解析】設(shè)B表示“該小組比賽中射中目標(biāo)”,Ai(i=1,2,3,4)表示“選i級(jí)射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產(chǎn)品各有12件和10件,每批產(chǎn)品中各有1件廢品,現(xiàn)在先從第1批產(chǎn)品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設(shè)A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號(hào)的產(chǎn)品,已知其中由一廠生產(chǎn)的占 30%, 二廠生產(chǎn)的占 50% , 三廠生產(chǎn)的占 20%, 又知這三個(gè)廠的產(chǎn)品次品率分別為2% , 1%, 1%,問從這批產(chǎn)品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,還剩下99件產(chǎn)品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個(gè)條件概率,所以P(B|A)=4/99.方法二:根據(jù)條件概率的定義,先求出事件A,B同時(shí)發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機(jī)地抽出6道題,若考生至少答對(duì)其中的4道題即可通過;若至少答對(duì)其中5道題就獲得優(yōu)秀.已知某考生能答對(duì)其中10道題,并且知道他在這次考試中已經(jīng)通過,求他獲得優(yōu)秀成績(jī)的概率.解:設(shè)事件A為“該考生6道題全答對(duì)”,事件B為“該考生答對(duì)了其中5道題而另一道答錯(cuò)”,事件C為“該考生答對(duì)了其中4道題而另2道題答錯(cuò)”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.
3.某縣農(nóng)民月均收入服從N(500,202)的正態(tài)分布,則此縣農(nóng)民月均收入在500元到520元間人數(shù)的百分比約為 . 解析:因?yàn)樵率杖敕恼龖B(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內(nèi)的概率為0.683.由圖像的對(duì)稱性可知,此縣農(nóng)民月均收入在500到520元間人數(shù)的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個(gè)尺寸范圍的零件數(shù)約占總數(shù)的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內(nèi)取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內(nèi)的概率為1-95.4%=4.6%.答案:4.6%5. 設(shè)在一次數(shù)學(xué)考試中,某班學(xué)生的分?jǐn)?shù)X~N(110,202),且知試卷滿分150分,這個(gè)班的學(xué)生共54人,求這個(gè)班在這次數(shù)學(xué)考試中及格(即90分及90分以上)的人數(shù)和130分以上的人數(shù).解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數(shù)約為9人.
就這樣,寒號(hào)鳥每晚都在立志,白天又不去勞動(dòng),一個(gè)冬天過去了,窩始終沒有建起來,最終凍死在巖石縫里。這則寓言告訴我們,勞動(dòng)是生活的基礎(chǔ),是幸福的。人生中,既要有仰望星空的志向,更要付諸腳踏實(shí)地的勞動(dòng)。同學(xué)們,讓我們用雙手創(chuàng)造幸福,用勞動(dòng)踐行理想吧!謝謝大家!
過渡:在實(shí)際生活中,城市內(nèi)部空間結(jié)構(gòu)并非完全按照這一經(jīng)濟(jì)規(guī)律呈現(xiàn),而是更具復(fù)雜性。這說明除了經(jīng)濟(jì)因素外,還有很多其他因素在起作用,請(qǐng)大家結(jié)合你的認(rèn)識(shí)、圖2.9和案例1:紐約市的少數(shù)民族區(qū)談?wù)勀愕目捶?。?)其他因素I收入——形成不同級(jí)別住宅區(qū)的常見原因。有能力支付昂貴租金和選擇最佳居住環(huán)境的人,其居住地往往形成高級(jí)住宅區(qū)。II知名度——城市內(nèi)某些地區(qū)在歷史、文化或經(jīng)濟(jì)方面具有很高的聲譽(yù),這往往會(huì)吸引更多新的住宅或商場(chǎng)建在該處,以提高其知名度。III種族聚居區(qū)的形成——在有些城市的某一區(qū)域內(nèi),如果某個(gè)種族或宗教團(tuán)體占優(yōu)勢(shì),就可能形成種族聚居區(qū)。如紐約市的唐人街、哈林區(qū)、小意大利區(qū)等。IV歷史因素——城市的建筑物和街道設(shè)計(jì)可以維持久遠(yuǎn),早期的土地利用方式對(duì)日后的功能分區(qū)有著深遠(yuǎn)的影響。
1、通過同位之間互說座位位置,檢測(cè)知識(shí)目標(biāo)2、3的達(dá)成效果。2、通過導(dǎo)學(xué)案上的探究一,檢測(cè)知識(shí)目標(biāo)2、3的達(dá)成效果。 3、通過探究二,檢測(cè)知識(shí)目標(biāo)1、3的達(dá)成效果。 4、通過課堂反饋,檢測(cè)總體教學(xué)目標(biāo)的達(dá)成效果。本節(jié)課遵循分層施教的原則,以適應(yīng)不同學(xué)生的發(fā)展與提高,針對(duì)學(xué)生回答問題本著多鼓勵(lì)、少批評(píng)的原則,具體從以下幾方面進(jìn)行評(píng)價(jià):1、通過學(xué)生獨(dú)立思考、參與小組交流和班級(jí)集體展示,教師課堂觀察學(xué)生的表現(xiàn),了解學(xué)生對(duì)知識(shí)的理解和掌握情況。教師進(jìn)行適時(shí)的反應(yīng)評(píng)價(jià),同時(shí)促進(jìn)學(xué)生的自評(píng)與互評(píng)。2、通過設(shè)計(jì)課堂互說座位、探究一、二及達(dá)標(biāo)檢測(cè)題,檢測(cè)學(xué)習(xí)目標(biāo)達(dá)成情況,同時(shí)有利于學(xué)生完成對(duì)自己的評(píng)價(jià)。3.通過課后作業(yè),了解學(xué)生對(duì)本課時(shí)知識(shí)的掌握情況,同時(shí)又能檢測(cè)學(xué)生分析解決問題的方法和思路,完成教學(xué)反饋評(píng)價(jià)。
1. 在撿菜的過程中進(jìn)行分類比較,了解韭菜.大蒜.蔥的不同特征。2. 在種植過程中,發(fā)現(xiàn)根能吸收營(yíng)養(yǎng),幫助植物生長(zhǎng)。準(zhǔn)備: 1韭菜 .大蒜 .蔥。2筐若干個(gè)(三只以上)。3小花盆若干。
二、班會(huì)主題:弘揚(yáng)雷鋒精神,爭(zhēng)做新時(shí)代好少年三、班會(huì)目標(biāo):1、通過活動(dòng),使學(xué)生進(jìn)一步了解雷鋒精神的內(nèi)涵,懂得將崇高的理想信念和道德品質(zhì)追求融入日常學(xué)習(xí)生活中。2、通過活動(dòng),使學(xué)生自覺學(xué)習(xí)雷鋒無私奉獻(xiàn)的精神,自覺學(xué)習(xí)雷鋒刻苦鉆研、好學(xué)上進(jìn)的精神;時(shí)刻用雷鋒精神指引奮斗的航向,立起人生的標(biāo)桿
(1)寫出平均每天銷售(y)箱與每箱售價(jià)x(元)之間的函數(shù)關(guān)系式.(注明范圍)(2)求出商場(chǎng)平均每天銷售這種牛奶的利潤(rùn)W(元)與每箱牛奶的售價(jià)x(元)之間的二次函數(shù)關(guān)系式(每箱的利潤(rùn)=售價(jià)-進(jìn)價(jià)).(3)求出(2)中二次函數(shù)圖象的頂點(diǎn)坐標(biāo),并求當(dāng)x=40,70時(shí)W的值.在坐標(biāo)系中畫出函數(shù)圖象的草圖.(4)由函數(shù)圖象可以看出,當(dāng)牛奶售價(jià)為多少時(shí),平均每天的利潤(rùn)最大?最大利潤(rùn)為多少?解:(1)當(dāng)40≤x≤50時(shí),則降價(jià)(50-x)元,則可多售出3(50-x),所以y=90+3(50-x)=-3x+240.當(dāng)50<x≤70時(shí),則升高(x-50)元,則可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.因此,當(dāng)40≤x≤70時(shí),y=-3x+240.(2)當(dāng)每箱售價(jià)為x元時(shí),每箱利潤(rùn)為(x-40)元,平均每天的利潤(rùn)為W=(240-3x)(x-40)=-3x2+360x-9600.
當(dāng)然,在討論的過程中,對(duì)個(gè)別學(xué)生要及時(shí)點(diǎn)撥利用相似三角形對(duì)應(yīng)邊的關(guān)系來求AD,至于S與x的關(guān)系式自然是水到渠成了。接著讓同學(xué)們以小組為單位,派出代表展示自己的討論成果。然后我進(jìn)一步拋出重點(diǎn)問題3)這里S與x是一種什么函數(shù)關(guān)系?當(dāng)x 取何值時(shí),S的值最大?最大值是多少?這個(gè)例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長(zhǎng)和寬,通過學(xué)生的思考、討論、大家都明白了S與x的關(guān)系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題了.簡(jiǎn)單的小組交流過后,同學(xué)們爭(zhēng)先恐后表達(dá)自己的觀點(diǎn):有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點(diǎn)坐標(biāo)求出了最大面積。 ,我及時(shí)的鼓勵(lì)學(xué)生:大家真的很棒,老師為你們驕傲,請(qǐng)?jiān)俳釉賲枴?/p>
問題1. 用一個(gè)大寫的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的一個(gè)座位編號(hào),總共能編出多少種不同的號(hào)碼?因?yàn)橛⑽淖帜腹灿?6個(gè),阿拉伯?dāng)?shù)字共有10個(gè),所以總共可以編出26+10=36種不同的號(hào)碼.問題2.你能說說這個(gè)問題的特征嗎?上述計(jì)數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號(hào)碼和數(shù)字號(hào)碼兩類;(2)分別計(jì)算各類號(hào)碼的個(gè)數(shù);(3)各類號(hào)碼的個(gè)數(shù)相加,得出所有號(hào)碼的個(gè)數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計(jì)數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),如表,