【設(shè)計思路】新課程十分強調(diào)科學(xué)探究在科學(xué)課程中的作用,應(yīng)該說科學(xué)探究是這次課程改革的核心。我覺得:科學(xué)探究不一定是要讓學(xué)生純粹地通過實驗進行探究,應(yīng)該說科學(xué)探究是一種科學(xué)精神,學(xué)生只要通過自己的探索和體驗,變未知為已知,這樣的教學(xué)活動也是科學(xué)探究。本節(jié)課是概念教學(xué)課,讓學(xué)生純粹地通過實驗進行探究是不太合適的。但通過學(xué)生自己的探索和體驗,變未知為已知還比較合適。本節(jié)課的設(shè)計就是基于這樣的出發(fā)點,在引出加速度的概念時低臺階,步步深入,充分激活學(xué)生的思維,是學(xué)生思維上的探究。通過復(fù)習(xí)前邊速度時間圖像,從而得到從圖像上得到加速度的方法,為加深加速度概念和相關(guān)知識的理解有配套了相應(yīng)練習(xí)題目,做到強化練習(xí)的目的?!窘虒W(xué)目標(biāo)】知識與技能1.理解加速度的意義,知道加速度是表示速度變化快慢的物理量.知道它的定義、公式、符號和單位,能用公式a=△v/△t進行定量計算.2.知道加速度與速度的區(qū)別和聯(lián)系,會根據(jù)加速度與速度的方向關(guān)系判斷物體是加速運動還是減速運動.
3、若出現(xiàn)了個別明顯偏離絕大部分點所在直線的點,該如何處理?(對于個別明顯偏離絕大部分點所在直線的點,我們可以認為是測量誤差過大、是測量中出現(xiàn)差錯所致,將它視為無效點,但是在圖像當(dāng)中仍應(yīng)該保留,因為我們要尊重實驗事實,這畢竟是我們的第一手資料,是原始數(shù)據(jù)。)4、怎樣根據(jù)所畫的v-t圖像求加速度?(從所畫的圖像中取兩個點,找到它們的縱、橫坐標(biāo)(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直線的斜率。在平面直角坐標(biāo)系中,直線的斜率四、實踐與拓展例1、在探究小車速度隨時間變化規(guī)律的實驗中,得到一條記錄小車運動情況的紙帶,如圖所示。圖中A、B、C、D、E為相鄰的計數(shù)點,相鄰計數(shù)點的時間間隔為T=0.1s。⑴根據(jù)紙帶上的數(shù)據(jù),計算B、C、D各點的數(shù)據(jù),填入表中。
本來比較速度變化的快慢也有兩種方法:一種是比較相同時間內(nèi)速度變化量的大?。涣硪环N是比較發(fā)生相同的速度變化所需要的時間長短。但教材是將比較質(zhì)點位置移動快慢的思想直接遷移過來,通過實例分析,使學(xué)生明白不同運動物體的速度變化快慢不同,表現(xiàn)在速度的變化與發(fā)生這個變化所用時間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認為只要有加速度的運動速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運動的情景中討論。加速度的矢量性是一個難點,教材是以與速度方向相同或是相反來表述加速度的矢量性的。如果以初速度方向為正方向,那么加速度就有正負之分,加速度的正負表示加速度的方向,不表示加速度的大小。
(三)合作交流能力提升教師:剛才我們通過實驗了解了小車的速度是怎樣隨時間變化的,但實驗中有一定的誤差,請同學(xué)們討論并說出可能存在哪些誤差,造成誤差的原因是什么?(每個實驗小組的同學(xué)之間進行熱烈的討論)學(xué)生:測量出現(xiàn)誤差。因為點間距離太小,測量長度時容易產(chǎn)生誤差。教師:如何減小這個誤差呢?學(xué)生:如果測量較長的距離,誤差應(yīng)該小一些。教師:應(yīng)該采取什么辦法?學(xué)生:應(yīng)該取幾個點之間的距離作為一個測量長度。教師:好,這就是常用的取“計數(shù)點”的方法。我們應(yīng)該在紙帶上每隔幾個計時點取作一個計數(shù)點,進行編號。分別標(biāo)為:0、1、2、3……,測各計數(shù)點到“0”的距離。以減小測量誤差。教師:還有補充嗎?學(xué)生1:我在坐標(biāo)系中描點畫的圖象只集中在坐標(biāo)原定附近,兩條圖象沒有明顯的分開。學(xué)生2:描出的幾個點不嚴(yán)格的分布在一條直線上,還能畫直線嗎?
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準(zhǔn)線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
一團綠火像鎂光似的在保爾眼前一閃,耳邊響起了一聲巨雷,燒紅的鐵片灼傷了他的腦袋。大地可怕地、不可思議地旋轉(zhuǎn)起來,開始緩緩地向一旁倒下去。保爾像一根稻草似的被甩離了馬鞍,越過馬頭,重重地摔倒在地。師:在那血與火的戰(zhàn)爭年代,保爾馳騁疆場,為革命事業(yè)浴血奮戰(zhàn),不懼犧牲。他那鋼鐵般的意志是在戰(zhàn)火紛飛的疾苦中千錘百煉而成的。3.面對疾病師:病痛沒有擊垮保爾,面對自身的疾病,他是這樣的——片段一:“……我受到一次又一次的打擊。一次打擊過后,我剛站起來,另一次打擊,比上一次更無情的打擊又來了。最可怕的是我無力反擊。先是左臂不聽使喚。這已經(jīng)是夠痛苦的了,誰知緊接著兩條腿也不能活動。我原本就只能在室內(nèi)勉強走動,現(xiàn)在甚至從床沿挪到桌子跟前也異常困難??墒?,恐怕這還不算最糟的。明天會怎么樣?誰也無法預(yù)料……”
“拱一拱手,一屁股就坐在上席”,兩個動作活畫出了夏總甲在鄉(xiāng)民面前的傲慢自大。作者接著寫他的一番話語:“俺如今倒不如你們務(wù)農(nóng)的快活了。想這新年大節(jié),老爺衙門里,三班六房,那一位不送帖子來。我怎好不去賀節(jié)?每日騎著這個驢,上縣下鄉(xiāng),跑得昏頭暈?zāi)X?!薄皬男履赀@七八日,何曾得一個閑?恨不得長出兩張嘴來,還吃不退。”巧妙地揭示了他為何目中無人和衣服“就如酒簍一般”。二、通過故事情節(jié)的前后對比來表達諷刺。第二回中,周進六十多歲了,還以老童生的身份在薛家集觀音庵教私塾,一年才十二兩館銀,生活窘困,地位低下,村中新中秀才青年梅玖也奚落他。到第七回中,周進中了進士,做了官以后,梅玖就無恥地冒充自己是周進的學(xué)生,薛家集的觀音庵里也供起了周進的長生牌位。梅玖見了周進早年寫的一副對聯(lián),貼在墻上,紅紙都發(fā)白了,竟吩咐和尚用水噴了,剝下來裝裱收藏。這一對比既寫出了周進做官前后迥然不同的境遇,也寫出了秀才梅玖的庸俗勢利以及社會上一些人的趨炎附勢。所以,《儒林外史》的諷刺,不僅僅是對人物的諷刺,更是對當(dāng)時社會中各種現(xiàn)象的揭露、控訴和批判。
1.國家石油價格上漲,導(dǎo)致依賴于國際石油而建立起來的日本重化工業(yè)的制造成本提高,產(chǎn)品價格相應(yīng)提高,削弱了日本重化工產(chǎn)品在國際市場上的競爭力。2.日元 的大幅度升值,意味著日本產(chǎn)品在國際市場上的價格大幅度提高。例如,同樣的日本產(chǎn)品,如果原來在國際市場上賣1美元,日元升值1倍后其在國際市場上的售價就達2美元。所以,以國際市場為依托的日本傳統(tǒng)產(chǎn)業(yè)只好紛紛向海外轉(zhuǎn)移。3.自身市場滿足不了發(fā)展需求,國際市場上亞洲發(fā)展中國家和地區(qū)的同類產(chǎn)品具有明顯的價格優(yōu)勢。所以,日本企業(yè)在其國內(nèi)發(fā)展的空間很小。4.勞動力價格高反映為產(chǎn)品的價格高,而勞動力數(shù)量又滿足 不了企業(yè)進一步擴展對勞動力的需求。所以,日本從事傳統(tǒng)產(chǎn)業(yè)的國內(nèi)企業(yè)生產(chǎn)受勞動力價格和數(shù)量的雙重制約。5.促進日本企業(yè)生產(chǎn)的區(qū)位選擇向國土的南、北部和海外擴展。6.“技術(shù)立國”的政策明顯對傳統(tǒng)產(chǎn)業(yè)在國內(nèi)生產(chǎn)不利,即企業(yè)生產(chǎn)要么向知識技術(shù)密集型轉(zhuǎn)換(這需要大量的投資),要么轉(zhuǎn)向海外。
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學(xué)生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.
【情感態(tài)度及價值觀】 通過創(chuàng)設(shè)探究情境,展示典型顯示案例激發(fā)思考,與學(xué)生共同感受當(dāng)前區(qū)域經(jīng)濟一體化與經(jīng)濟全球化浪潮的沖擊,以及當(dāng)前我國、我省發(fā)展的機遇、成就和危機,培養(yǎng)學(xué)生的時代感和使命感。五、重點難點【重點】1、產(chǎn)業(yè)轉(zhuǎn)移的影響因素2、產(chǎn)業(yè)轉(zhuǎn)移對區(qū)域地理環(huán)境的影響【難點】1、如何從圖文材料中分析出影響產(chǎn)業(yè)轉(zhuǎn)移的主要因素2、產(chǎn)業(yè)轉(zhuǎn)移對產(chǎn)業(yè)遷出區(qū)和移入?yún)^(qū)的不同影響六、教學(xué)方法1、材料分析法。提供分層次的問題與材料,并進行方法指導(dǎo),學(xué)生通過思考和討論自行分析發(fā)現(xiàn)知識、構(gòu)建知識。使不同層次的學(xué)生均有發(fā)展。這是本節(jié)設(shè)計主要采用的教學(xué)方法。2、合作探究法3、多媒體教學(xué)法七、 教學(xué)過程(一) 引入 :假如某同學(xué)買彩票中大獎,想投資生產(chǎn)面臨幾項選擇1、投資高端智能手機制造還是普通服裝廠?2、廠址選擇在濮陽市還是南樂縣?
1.閱讀圖5.16,說明產(chǎn)業(yè)向國外轉(zhuǎn)移對日本經(jīng)濟的不利影響。點撥:圖5.16直觀的顯示了產(chǎn)業(yè)轉(zhuǎn)移對日本經(jīng)濟的不利影響:形成“產(chǎn)業(yè)轉(zhuǎn)移出去的多,轉(zhuǎn)移進來的少→國內(nèi)生產(chǎn)投資不足,生產(chǎn)困難→市場萎縮→產(chǎn)業(yè)向外轉(zhuǎn)移,外資不愿進入”的惡性循環(huán)。2.盡管重化工業(yè)的環(huán)境污染比較嚴(yán)重,但是卻能為工業(yè)化的發(fā)展提供堅實的基礎(chǔ),因此成為發(fā)達工業(yè)的象征。日本、韓國的經(jīng)濟發(fā)展都經(jīng)歷了由輕工業(yè)(勞動密集型)到重化工業(yè)(資源密集型和資金密集型)到高科技工業(yè)(技術(shù)密集型)的階段。(1)為什么日本、韓國在重點發(fā)展重化工業(yè)之前,要先發(fā)展勞動密集型工業(yè)?點撥:重化工業(yè)的發(fā)展一方面需要有一定的工業(yè)基礎(chǔ)和技術(shù)工人,另一方面需要投入大量的資金,先發(fā)展勞動密集型工業(yè)有利于利用勞動力資源豐富且廉價的優(yōu)勢,積累資金和造就產(chǎn)業(yè)工人。所以,勞動力豐富的發(fā)展中國家或地區(qū)的工業(yè)化往往從優(yōu)先發(fā)展勞動密集型工業(yè)開始。