在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
Ⅵ.活動與探究某種“15選5”的彩票的獲獎號碼是從1~15這15個數(shù)字小選擇5個數(shù)字(可以重復(fù)),若彩民所選擇的5個數(shù)字恰與獲獎號碼相同,即可獲得特等獎.小明觀察了最近100期獲獎號碼,發(fā)現(xiàn)其中竟有51期有重號(同一期獲獎號碼有2個或2個以上的數(shù)字相同),66期有連號(同一期獲獎號碼中有2個或2個以上的數(shù)字相鄰).他認為獲獎號碼不應(yīng)該有這么多重號和連號,獲獎號碼可能不是隨機產(chǎn)生的,有失公允.小明的觀點有道理嗎?重號的概率大約是多少?利用計算器模擬實驗可以估計重號的概率.[過程]兩人組成一個小組,利用計算器產(chǎn)生1~15之間的隨機數(shù).并記錄下來,每產(chǎn)生5個隨機數(shù)為一次實驗,每組做10次實驗,看看有幾次重號和連號.將全班的數(shù)據(jù)匯總集中起來,就可估計出1~15之間的整數(shù)中隨機抽出5個數(shù)出現(xiàn)重號和連號的概率.
(四)提高應(yīng)用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設(shè)計意圖:訓(xùn)練學(xué)生靈活運用知識的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似. 2、在找對應(yīng)角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調(diào)兩個基本圖形,培養(yǎng)學(xué)生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應(yīng)角的方法:①已知角相等;②已知角度計算得出相等的對應(yīng)角;③公共角;④對頂角;⑤同角的余(補)角相等.
接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學(xué)表達式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對應(yīng)高和對應(yīng)邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書規(guī)范的證明過程。接著問學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對應(yīng)高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學(xué)表達式和證明方法與命題1類似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個命題。
解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設(shè)計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于 第一、三象限內(nèi)當k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學(xué)生自己動手列表、描點、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計反比例函數(shù)的性質(zhì)性質(zhì)當k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中,增強他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強、壓力與受力面積之間的關(guān)系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關(guān)系,從而進一步建立反比例函數(shù)模型.三、板書設(shè)計反比例函數(shù)的應(yīng)用實際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識的綜合經(jīng)歷分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系,增強應(yīng)用意識.通過反比例函數(shù)在其他學(xué)科中的運用,體驗學(xué)科整合思想.
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應(yīng)為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應(yīng)的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設(shè)計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學(xué)生體會到三視圖中位置及各部分之間大小的對應(yīng)關(guān)系.通過具體活動,積累學(xué)生的觀察、想象物體投影的經(jīng)驗,發(fā)展學(xué)生的動手實踐能力、數(shù)學(xué)思考能力和空間觀念.
教學(xué)目標:1.經(jīng)歷由實物抽象出幾何體的過程,進一步發(fā)展空間觀念。2.會畫圓柱、圓錐、球的三視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會根據(jù)三視圖描述原幾何體。教學(xué)重點:掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實踐法教學(xué)過程設(shè)計一、實物觀察、空間想像設(shè)置:學(xué)生利用準備好的大小相同的正方形方塊,搭建一個立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實物,搭建2個立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
五、拓展延伸聯(lián)系自己的生活經(jīng)驗讀課文,結(jié)合課文的具體內(nèi)容想一想,作為一個忙碌的現(xiàn)代人,我們該如何建構(gòu)自己的精神空間?【設(shè)計意圖】讓學(xué)生明白精神豐富對于人生的意義,讓學(xué)生在飽含濃郁文采的字句中體會到:情感、事業(yè)、精神應(yīng)融為一體,才能成為一個幸??鞓返娜?。結(jié)束語:文章以三間小屋為載體,闡述了精神追求的內(nèi)涵及其意義,提醒我們要關(guān)注自我心靈,提升精神境界。只有擁有“健康”“莊嚴”“努力”“真誠”,我們才能擁有幸福而充實的生活。在20世紀著名的德國哲學(xué)家海德格爾看來,人和動物、植物一樣,都是從屬于大地和自然的,人不是自然和大地的主宰,而是他們的維護者,人應(yīng)當學(xué)會詩意地棲居在大地上。也許不是每個人都能詩意地生活,但是我們要有對詩意生活的向往和追求,如果我們連追求詩意生活的想法都沒有了,那么我們的生活注定永遠蒼白甚至貧瘠。同學(xué)們,讓我們學(xué)會創(chuàng)造自己的幸福生活吧!
《智取生辰綱》的核心人物是吳用和楊志,他們的對決實在精彩。楊志為了保住生辰綱可謂智計百出:他為了掩人耳目,故意不多帶兵,“智藏行蹤”;離京五七日后楊志對時間調(diào)整,由五更起日中歇,變?yōu)槌脚破鹕陼r歇,這說明他小心謹慎,“智變行辰”;放著寬平的官道不走,凈找些偏僻崎嶇的小徑自討苦吃,這樣難走的路徑,恐怕連歹人也不愿走,“智選路徑”。這些行為可見楊志精明多智??墒菂怯镁谷坏栏咭怀?,制訂軟取計劃,充分考慮時、地、人三個因素:天氣炎熱,押運者必有懈怠之處,利用天時,以藥酒作為武器;黃泥岡為必經(jīng)之途,人煙稀少,易于動作,于此設(shè)伏,占有地利;楊志為人精細,武藝高強,如果硬取一時未必得手,即使得手也未必能順利脫身。所以吳用完全圍繞楊志實施軟取計劃。①喬裝歇涼黃泥岡販棗客,麻痹楊志一行。②白勝挑酒故意不賣,販棗人買下一桶,當面吃盡,顯示酒中無藥,迷惑楊志一行。③在另一桶舀酒,一人搶吃一瓢,一人再來桶里舀酒,巧下藥,蒙騙楊志一行。④白勝賭氣不賣,販棗人好心調(diào)解,引誘楊志一行。以上計劃,皆是吳用精心設(shè)計。精明如楊志,亦不能不中其計。實在精彩啊!
3.小組討論:詩人為我們呈現(xiàn)出了什么樣的人間四月天圖景?結(jié)合詩句分析。教師:把學(xué)生分為6至8個小組討論,最后每組選出代表回答,教師點評各組答案,最后指正。教師指正:詩人為我們呈現(xiàn)了一幅清新明麗、溫潤豐美的人間四月天圖景。和煦的微風(fēng)在春光里飛舞,黃昏的云煙彌漫,繁星在夜空閃爍,細雨灑落在花前,百花鮮艷、婀娜,夜夜的月光皎潔明凈,草是鵝黃的,芽是嫩綠的,蓮是潔白的,繁花一樹樹綻放,春燕一雙雙呢喃。四、課堂小結(jié)1.這首詩歌我們已經(jīng)學(xué)習(xí)完了,下面請同學(xué)們概括歸納一下主題。教師:要求一至兩名學(xué)生歸納,最后教師指正。預(yù)設(shè):這首抒情詩中,詩人使用了描寫和抒情的表達方式,極力抒寫“你”是“人間的四月天”,表達了對愛的熱烈歌頌。2.分析明晰本詩寫法,體會寫作特色。(教師講解,學(xué)生記錄)
【學(xué)習(xí)目標】1.知識與技能:加深對燃燒條件的認識,進一步了解滅火的原理。2.過程與方法:體驗實驗探究的過程,學(xué)習(xí)利用實驗探究的方法研究化學(xué)。3.情感態(tài)度與價值觀:利用化學(xué)知識解釋實際生活中的具體問題,使學(xué)生充分體會到化學(xué)來源于生活,服務(wù)于社會。【學(xué)習(xí)重點】通過物質(zhì)燃燒條件的探究,學(xué)習(xí)利用控制變量的思想設(shè)計探究實驗,說明探究實驗的一般過程和方法。【學(xué)習(xí)難點】利用控制變量的思想設(shè)計對照實驗進行物質(zhì)燃燒條件的探究?!菊n前準備】《精英新課堂》:預(yù)習(xí)學(xué)生用書的“早預(yù)習(xí)先起步”?!睹麕煖y控》:預(yù)習(xí)贈送的《提分寶典》。情景導(dǎo)入 生成問題1.復(fù)習(xí):什么叫燃燒?燃燒條件有哪些?今天自己設(shè)計實驗來進行探究。2.明確實驗?zāi)繕?,?dǎo)入新課。合作探究 生成能力學(xué)生閱讀課本P150的相關(guān)內(nèi)容并掌握以下內(nèi)容。實驗用品:鑷子、燒杯、坩堝鉗、三腳架、薄銅片、酒精、棉花、乒乓球、濾紙、蠟燭。你還需要的實驗用品:酒精燈、水。1.實驗:用棉花分別蘸酒精和水,放到酒精燈火焰上加熱片刻。上述實驗中我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?如果在酒精燈上加熱時間較長,會發(fā)生什么現(xiàn)象?答:蘸酒精的棉花燃燒,蘸水的棉花沒有燃燒,說明燃燒需要有可燃物。如果加熱時間較長,水蒸發(fā)后,蘸水的棉花也會燃燒。2.如圖所示,進行實驗:我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?答:在酒精燈火焰上加熱乒乓球碎片和濾紙碎片,都能燃燒,說明二者都是可燃物。放在銅片兩側(cè)給它們加熱后可看到乒乓球碎片先燃燒,說明燃燒需要溫度達到可燃物的著火點。3.你能利用蠟燭和燒杯(或選擇其他用品)設(shè)計一個簡單實驗證明燃燒需要氧氣(或空氣)嗎?答:點燃兩支相同的蠟燭,然后在一支蠟燭上扣住一只杯子,看到被杯子扣住的蠟燭一會兒就熄滅,說明燃燒的條件之一是需要氧氣。
在解決問題的過程中,學(xué)生使用到了生活中常見的工具——標桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺到利用身邊的工具完全可以達到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會形成主動尋求知識的內(nèi)在動力。學(xué)生在這種學(xué)習(xí)情境中主動學(xué)習(xí)到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問題意識。問題解決后,教師應(yīng)讓學(xué)生從解決的問題出發(fā),通過對題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問題,這樣不僅讓學(xué)生掌握了更多的知識,還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。
準備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復(fù)摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復(fù)聽到消息的可能性是很大的,當然重復(fù)感染的可能性也是很大的。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學(xué)的實際應(yīng)用。有兩種解題思路:枚舉法和方程法。