解析:橫軸表示時間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對應(yīng)的x值,即15時,A對;溫度最低應(yīng)找到圖象的最低點(diǎn)所對應(yīng)的x值,即3時,B對;這天最高溫度與最低溫度的差應(yīng)讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對應(yīng)值.三、板書設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識點(diǎn)串連起來,完成對該部分內(nèi)容的完整認(rèn)識和意義建構(gòu).這對學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識,課堂教學(xué)內(nèi)容以學(xué)生動手操作為主,在學(xué)生動手操作的過程中要鼓勵學(xué)生大膽動手,培養(yǎng)學(xué)生的動手能力和書面語言表達(dá)能力
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個句子沒有對某一件事情作出任何判斷,那么它就不是命題.活動目的:通過課后的總結(jié),使學(xué)生對定義、命題等概念有更清楚的認(rèn)識,讓學(xué)生在頭腦中對本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對命題的學(xué)習(xí)有了清楚的認(rèn)識。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無味的。并能從表演中不同的人對“黑客”這個名詞的不同理解更好地悟出“定義”的含義。
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問題中得到關(guān)系式這一過程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計(jì)命題分類公理:公認(rèn)的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實(shí)際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對真假命題有一個清楚的認(rèn)識,從而進(jìn)一步了解定理、公理的概念.培養(yǎng)學(xué)生的語言表達(dá)能力.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對問題的創(chuàng)設(shè),鼓勵學(xué)生去觀察方程的特點(diǎn),在過手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過精心設(shè)計(jì)的問題,引導(dǎo)學(xué)生在已有知識的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動中,加深學(xué)生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識、技能和方法,提高學(xué)習(xí)效率,而且還加深了對數(shù)學(xué)中通性和通法的認(rèn)識,體會學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
探究點(diǎn)三:函數(shù)的圖象洗衣機(jī)在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機(jī)內(nèi)無水).在這三個過程中,洗衣機(jī)內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機(jī)工作前洗衣機(jī)內(nèi)無水,∴A,B兩選項(xiàng)不正確,淘汰;又∵洗衣機(jī)最后排完水,∴D選項(xiàng)不正確,淘汰,所以選項(xiàng)C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設(shè)計(jì)函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
四個同學(xué)為一個合作小組;每個小組利用教師為其準(zhǔn)備的各類三角形,作出它們的高.比一比,看哪一個小組做得最快,發(fā)現(xiàn)的結(jié)論多. 師生行為:學(xué)生操作、討論,教師巡視、指導(dǎo),使學(xué)生理解【設(shè)計(jì)意圖】通過讓學(xué)生操作、觀察、推理、交流等活動,來培養(yǎng)學(xué)生的動手、動腦能力,發(fā)展其空間觀察.活動結(jié)論:1.銳角三角形的三條高都在三角形內(nèi); 2.直角三角形的一條高在三角形內(nèi)(即斜邊上的高),而另兩條高恰是它的兩條直角邊; 3.鈍角三角形的一條高在三角形內(nèi),而另兩條高在三角形外.(這是難點(diǎn),需多加說明) 總之:任何三角形都有三條高,且三條高所在的直線相交于一點(diǎn).(我們把這一點(diǎn)叫垂心)課堂小結(jié) 1.三角形中三條重要線段:三角形的高、中線和角平分線的概念. 2.學(xué)會畫三角形的高、中線和角平分線.
教學(xué)目標(biāo)1、明確扇形統(tǒng)計(jì)圖的制作步驟,能夠根據(jù)相關(guān)數(shù)據(jù)較為準(zhǔn)確地制作扇形統(tǒng)計(jì)圖.2、進(jìn)一步理解扇形統(tǒng)計(jì)圖的特點(diǎn),建立百分比大小和扇形圓心角大小之間初步的直觀敏感度.3、能夠?qū)崿F(xiàn)不同統(tǒng)計(jì)圖數(shù)據(jù)間的合理轉(zhuǎn)換,再次體會幾種統(tǒng)計(jì)圖的不同特點(diǎn),為合理選擇統(tǒng)計(jì)圖表示數(shù)據(jù)打下一定的基礎(chǔ).4、通過實(shí)例,理解三種統(tǒng)計(jì)圖的特點(diǎn),能根據(jù)具體問題選擇合適的統(tǒng)計(jì)圖清晰、有效地描述數(shù)據(jù).5、在統(tǒng)計(jì)活動的過程中,通過相互間的合作與交流,掌握畫統(tǒng)計(jì)圖和選擇統(tǒng)計(jì)圖的方法;經(jīng)歷數(shù)據(jù)的收集、整理和簡單分析、作出決策的統(tǒng)計(jì)活動過程,發(fā)展統(tǒng)計(jì)觀念.6、通過對現(xiàn)實(shí)生活中的數(shù)據(jù)分析,感受數(shù)學(xué)與現(xiàn)實(shí)生活的密切聯(lián)系,說出統(tǒng)計(jì)圖在現(xiàn)實(shí)生活中的應(yīng)用,提高學(xué)習(xí)數(shù)學(xué)興趣.
(一)、創(chuàng)設(shè)情景,導(dǎo)入新課摸牌游戲:三位同學(xué)持三組牌,指定三位同學(xué)分別任意摸出一張,看誰能摸到紅牌,他們一定能摸到紅牌嗎?請手持牌的同學(xué)根據(jù)自已手中牌的情況,用語言描述一下抽出紅牌的情況??偨Y(jié):在一定條件下,有些事情我們事先能肯定它一定發(fā)生,這些事情成為 事件。有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為 事件。 事件和 事件統(tǒng)稱為確定事件。許多事情我們事先無法肯定它會不會發(fā)生,這些事情稱為 事件,也稱為 事件。
我們不妨將主旨放在“莊生曉夢迷蝴蝶,望帝春心托杜鵑。滄海月明珠有淚,藍(lán)田日暖玉生煙。”二聯(lián)之前,那么,事情就變得簡單起來了:華年如莊生曉夢迷蝴蝶;華年如望帝春心托杜鵑;華年如滄海月明珠有淚;華年如藍(lán)田日暖玉生煙。從課下注釋,我們很容易就可以看出,這四句每一句都在用典。因此,我們通過對典故的解讀,然后加以整理,將其理順,似乎就可以完成對詩歌內(nèi)容的解讀;至于什么悼亡、愛情,不妨拋之腦后,畢竟,沒有那些其他的主題,也并沒有讓詩歌失色,而加上這些捉摸不定的主題,只是讓詩歌增加了所謂的神秘色彩,徒增閱讀難度而已。
3)乘除運(yùn)算①有理數(shù)的乘法法則:(老師給出,學(xué)生一起朗讀)1. 兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;2. 任何數(shù)與零相乘都得零;3. 幾個不等于零的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個數(shù),積為負(fù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)個時,積為正;4. 幾個有理數(shù)相乘,若其中有一個為零,積就為零。②有理數(shù)的除法法則:(老師提問,學(xué)生回答)1. 兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除;2. 除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。③關(guān)系(老師給出)除法轉(zhuǎn)化為乘法進(jìn)行運(yùn)算。
一、課前準(zhǔn)備師:同學(xué)們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標(biāo)志是什么?學(xué)生:我看到有些衣服上標(biāo)有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍,適合什么人穿,但肯定與身高、胖瘦有關(guān).師:這位同學(xué)很善動腦,也愛觀察.S代表最小號,身高在150~155cm的人適合穿S號.M號適合身高在155~160cm的人著裝……廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產(chǎn).你覺得這種生產(chǎn)方法有什么優(yōu)點(diǎn)?學(xué)校要為同學(xué)們訂制校服,為此小明調(diào)查了他們班50名同學(xué)的身高,結(jié)果(單位cm).如下
中班的幼兒開始愿意探究新異的事物或現(xiàn)象來滿足自己的好奇心,所以,我們的科學(xué)活動設(shè)計(jì)要在淺顯易懂,適合中班幼兒年齡特征的同時,引發(fā)幼兒對科學(xué)的初步探究能力。中班的幼兒已經(jīng)具有注意到新異事物或現(xiàn)象的,因此,我們在設(shè)計(jì)科學(xué)活動時要讓幼兒充分發(fā)揮想象,對磁鐵這種“新異”事物提出問題,如什么是磁鐵?什么時候看見過磁鐵?等等類似的問題,可以增強(qiáng)幼兒的探索興趣,提高幼兒的探索的積極性,有利于激發(fā)幼兒的想象力?! ≈邪嘤變褐饕跃唧w形象為主,需要具體的活動場景和活動形式,所以活動設(shè)計(jì)要提供幼兒合適的情景以提供操作思考的機(jī)會,進(jìn)一步發(fā)展幼兒的自主性和主動性。中班幼兒與小班幼兒相比,活動時間也有所增加,因此也需要在活動時間上給予一定的保證。
小學(xué)五年級的學(xué)生應(yīng)該具備一些生活技能, 學(xué)做家常菜是我們生活的必需,是每個,人都應(yīng)該掌握的生存技能。本主題的目的通過學(xué)習(xí)做簡單的家常菜,引領(lǐng)小學(xué)生走進(jìn)家務(wù)勞動,鍛煉生活的自理能力和提高適應(yīng)生活的能力,體會生活和學(xué)習(xí)的樂趣,激發(fā)學(xué)生將學(xué)校學(xué)習(xí)和家務(wù)勞動密切結(jié)合起來,形成積極的生活和學(xué)習(xí)的態(tài)度。本主題安排了“問題與思考”“學(xué)習(xí)與探究”“實(shí)踐與體驗(yàn)”總結(jié)與交流“拓展與創(chuàng)新”五個環(huán)節(jié),從提出問題開始,到探究與體驗(yàn),最后到學(xué)有所用,循序漸進(jìn),引導(dǎo)學(xué)習(xí)走進(jìn)中式餐飲文化,學(xué)做日常生活中的家常菜,掌握勞動的技能和方法,體驗(yàn)做家務(wù)勞動帶來的快樂和享受,激發(fā)學(xué)生對家常菜的探究與實(shí)踐的興趣,逐步掌握日常生活所需的基本技能,培養(yǎng)熱愛勞動、熱愛生活的意識。
教法分析:在新課程的教學(xué)中教師要向?qū)W生提供從事數(shù)學(xué)活動的機(jī)會,倡導(dǎo)讓學(xué)生親身經(jīng)歷數(shù)學(xué)知識的形成與應(yīng)用過程,鼓勵學(xué)生自主探索與合作交流,讓學(xué)生在實(shí)踐中體驗(yàn)、學(xué)習(xí)。因此,本節(jié)課我采用了多媒體輔助教學(xué)與學(xué)生動手操作、觀察、討論的方式,一方面能夠直觀、生動地反映各種圖形的特征,增加課堂的容量,吸引學(xué)生注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;另一方面也有利于突出重點(diǎn)、突破難點(diǎn),更好地提高課堂效率。學(xué)法分析:初二年級學(xué)習(xí)對新事物比較敏感,通過新課程教學(xué)的實(shí)施,學(xué)生已具有一定探索學(xué)習(xí)與合作交流的習(xí)慣。但是一下子要學(xué)生從直觀的圖形去概括出抽象圖形全等的概念這是比較困難的。因此,我指導(dǎo)學(xué)生:一要善于觀察發(fā)現(xiàn);二要勇于探索、動手實(shí)驗(yàn);三要把自己的所思所想大膽地進(jìn)行交流,從而得出正確的結(jié)論,并掌握知識。