提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版高中語(yǔ)文必修2《游褒禪山記》教案2篇

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的應(yīng)用1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)反比例函數(shù)的應(yīng)用1教案

    因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過(guò)點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識(shí)解決實(shí)際問(wèn)題時(shí),要善于發(fā)現(xiàn)實(shí)際問(wèn)題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計(jì)反比例函數(shù)的應(yīng)用實(shí)際問(wèn)題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識(shí)的綜合經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題的過(guò)程,提高運(yùn)用代數(shù)方法解決問(wèn)題的能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).通過(guò)反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)直接提公因式因式分解教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)直接提公因式因式分解教案

    解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過(guò)程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)異分母分式的加減教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)異分母分式的加減教案

    分式1x2-3x與2x2-9的最簡(jiǎn)公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡(jiǎn)公分母為x(x+3)(x-3).方法總結(jié):最簡(jiǎn)公分母的確定:最簡(jiǎn)公分母的系數(shù),取各個(gè)分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解.【類型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡(jiǎn)公分母,找到各個(gè)分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個(gè)單項(xiàng)式.解:(1)最簡(jiǎn)公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡(jiǎn)公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡(jiǎn)公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)線段的垂直平分線教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)線段的垂直平分線教案

    ∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)一元一次不等式的解法教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)一元一次不等式的解法教案

    方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過(guò)程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號(hào);(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過(guò)類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時(shí)有所不同.如果這個(gè)系數(shù)是正數(shù),不等號(hào)的方向不變;如果這個(gè)系數(shù)是負(fù)數(shù),不等號(hào)的方向改變.這也是這節(jié)課學(xué)生容易出錯(cuò)的地方.教學(xué)時(shí)要大膽放手,不要怕學(xué)生出錯(cuò),通過(guò)學(xué)生犯的錯(cuò)誤引起學(xué)生注意,理解產(chǎn)生錯(cuò)誤的原因,以便在以后的學(xué)習(xí)中避免出錯(cuò).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用樹狀圖或表格求概率1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用樹狀圖或表格求概率1教案

    由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時(shí)要正確區(qū)分,如利用列表法求概率時(shí),不重復(fù)在列表中有空格,重復(fù)在列表中則不會(huì)出現(xiàn)空格.三、板書設(shè)計(jì)用樹狀圖或表格求概率畫樹狀圖法列表法通過(guò)與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識(shí).在活動(dòng)中進(jìn)一步發(fā)展學(xué)生的合作交流意識(shí),提高學(xué)生對(duì)所研究問(wèn)題的反思和拓展的能力,逐步形成良好的反思意識(shí).鼓勵(lì)學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識(shí).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡(jiǎn)單圖形的三視圖1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)簡(jiǎn)單圖形的三視圖1教案

    故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)1教案

    ①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡(jiǎn)便.三、板書設(shè)計(jì)

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)線段的比和成比例線段1教案

    故線段d的長(zhǎng)度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長(zhǎng)度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長(zhǎng).已知三條線段長(zhǎng)分別為1cm,2cm,2cm,請(qǐng)你再給出一條線段,使得它的長(zhǎng)與前面三條線段的長(zhǎng)能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒(méi)有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長(zhǎng)可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長(zhǎng)有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)相似三角形的周長(zhǎng)和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)一元二次方程的根與系數(shù)的關(guān)系1教案

    方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過(guò)觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問(wèn)題、發(fā)現(xiàn)關(guān)系的過(guò)程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過(guò)交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    如圖所示,要用長(zhǎng)20m的鐵欄桿,圍成一個(gè)一面靠墻的長(zhǎng)方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長(zhǎng)為xm,花圃的面積為ym2,那么y=x(20-2x).試問(wèn):x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)直線和圓的位置關(guān)系及切線的性質(zhì)教案

    解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對(duì)的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.

  • 中班主題課件教案:筷子主題之各種各樣的筷子

    中班主題課件教案:筷子主題之各種各樣的筷子

    活動(dòng)目標(biāo):1、通過(guò)看看、摸摸、玩玩使幼兒辨認(rèn)各種筷子,了解筷子的特點(diǎn)與用途,并學(xué)習(xí)歸類。2、讓幼兒練習(xí)使用筷子,初步學(xué)會(huì)撥、夾物品,做到持筷姿勢(shì)正確?;顒?dòng)準(zhǔn)備:幼兒自帶的不同材料制成的筷子、每組上面一樣夾的物品(如:一組蠶豆、一組泡漠、一組花生、一組玻璃球、一組紙條等。活動(dòng)過(guò)程:㈠、觀察各種各樣的筷子,將幼兒所帶筷子布置成展覽會(huì)。1、看看桌子上有什么?我們來(lái)把它布置成展覽會(huì)。2、交流:你帶的筷子是什么樣的?叫什么名字?有什么用處?

  • 大班數(shù)學(xué)活動(dòng)以客體為中心區(qū)分左右課件教案

    大班數(shù)學(xué)活動(dòng)以客體為中心區(qū)分左右課件教案

    2在以自身為中心區(qū)分左右的基礎(chǔ)上,學(xué)會(huì)以客體為中心區(qū)分左右3培養(yǎng)幼兒的空間方位感,提高思維的靈活性二活動(dòng)準(zhǔn)備木偶,圖示三活動(dòng)過(guò)程(一)通過(guò)游戲,幼兒復(fù)習(xí)以自我為中心區(qū)分左右?guī)?今天我們要玩一個(gè)游戲,當(dāng)我說(shuō)左手你們就伸出你們的左手,當(dāng)我說(shuō)右耳朵的時(shí)候你們就用手指著你們的右耳朵

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)正方形的性質(zhì)1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)比較線段的長(zhǎng)短教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)比較線段的長(zhǎng)短教案1

    1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長(zhǎng).一、情境導(dǎo)入愛(ài)護(hù)花草樹木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺(jué)得這樣做對(duì)嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識(shí),你就會(huì)知道.二、合作探究探究點(diǎn)一:線段長(zhǎng)度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長(zhǎng)如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長(zhǎng);(2)根據(jù)(1)中的計(jì)算過(guò)程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長(zhǎng)度嗎?請(qǐng)用簡(jiǎn)潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)等式的基本性質(zhì)教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)等式的基本性質(zhì)教案1

    方法總結(jié):對(duì)等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過(guò)觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.

  • 北師大初中七年級(jí)數(shù)學(xué)上冊(cè)多邊形和圓的初步認(rèn)識(shí)教案1

    北師大初中七年級(jí)數(shù)學(xué)上冊(cè)多邊形和圓的初步認(rèn)識(shí)教案1

    方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語(yǔ),如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對(duì)于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對(duì)照和分析,即可判定.探究點(diǎn)二:確定多邊形的對(duì)角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對(duì)角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過(guò)n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對(duì)角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對(duì)應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;

上一頁(yè)123...210211212213214215216217218219220221下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!