一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書(shū)設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
(2)如果對(duì)應(yīng)著的兩條小路的寬均相等,如圖②,試問(wèn)小路的寬x與y的比值是多少時(shí),能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對(duì)應(yīng)邊是否成比例來(lái)判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個(gè)矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因?yàn)榫匦蔚乃膫€(gè)角均是直角,所以在有關(guān)矩形相似的問(wèn)題中,只需看對(duì)應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長(zhǎng)度 .27.1-6教師活動(dòng):教師出示例題,提出問(wèn)題;學(xué)生活動(dòng):學(xué)生通過(guò)例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長(zhǎng)度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長(zhǎng)度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語(yǔ)言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁(yè)習(xí)題4.4
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫(xiě)出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
練習(xí):現(xiàn)在你能解答課本85頁(yè)的習(xí)題3.1第6題嗎?有一個(gè)班的同學(xué)去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問(wèn)這個(gè)班共多少同學(xué)?小結(jié)提問(wèn):1、今天你又學(xué)會(huì)了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書(shū)中的“對(duì)消”與“還原”是什么意思嗎?3、今天討論的問(wèn)題中的相等關(guān)系又有何共同特點(diǎn)?學(xué)生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(xiàng)(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個(gè)不同式子相等作業(yè):1、 必做題:課本習(xí)題2、 選做題:將一塊長(zhǎng)、寬、高分別為4厘米、2厘米、3厘米的長(zhǎng)方體橡皮泥捏成一個(gè)底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)
(3)移項(xiàng)得-4x=4+8,合并同類項(xiàng)得-4x=12,系數(shù)化成1得x=-3;(4)移項(xiàng)得1.3x+0.5x=0.7+6.5,合并同類項(xiàng)得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項(xiàng)移到方程的左邊,常數(shù)項(xiàng)移到方程的右邊,然后合并同類項(xiàng),最后將未知數(shù)的系數(shù)化為1.特別注意移項(xiàng)要變號(hào).探究點(diǎn)三:列一元一次方程解應(yīng)用題把一批圖書(shū)分給七年級(jí)某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個(gè)班有多少學(xué)生?解析:根據(jù)實(shí)際書(shū)的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個(gè)班有x個(gè)學(xué)生,根據(jù)題意得3x+20=4x-25,移項(xiàng)得3x-4x=-25-20,合并同類項(xiàng)得-x=-45,系數(shù)化成1得x=45.答:這個(gè)班有45人.方法總結(jié):列方程解應(yīng)用題時(shí),應(yīng)抓住題目中的“相等”、“誰(shuí)比誰(shuí)多多少”等表示數(shù)量關(guān)系的詞語(yǔ),以便從中找出合適的等量關(guān)系列方程.
知識(shí)目標(biāo)1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門(mén)。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標(biāo)1.讀圖分析礦產(chǎn)資源與工業(yè)部門(mén)之間的聯(lián)系,培養(yǎng)學(xué)生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應(yīng)因地制宜。2.聯(lián)系實(shí)際,了解當(dāng)?shù)貍鹘y(tǒng)工業(yè)發(fā)展?fàn)顩r,為適應(yīng)當(dāng)今世界經(jīng)濟(jì)發(fā)展?fàn)顩r,應(yīng)有哪些改善措施,培養(yǎng)學(xué)生的創(chuàng)新能力。德育目標(biāo)1.通過(guò)了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點(diǎn)看待傳統(tǒng)工業(yè)區(qū)的改造,適應(yīng)世界發(fā)展潮流。2.中國(guó)已經(jīng)“入世”,我們應(yīng)用辯證唯物主義觀點(diǎn)分析我國(guó)傳統(tǒng)工業(yè)今后遇到的機(jī)遇和挑戰(zhàn)。
為城市居民提供休養(yǎng)生息的場(chǎng)所,是城市最基本的功能區(qū).城市中最為廣泛的土地利用方式就是住宅用地.一般住宅區(qū)占據(jù)城市空間的40%—60%。(閱讀圖2.3)請(qǐng)同學(xué)講解高級(jí)住宅區(qū)與低級(jí)住宅區(qū)的差別(學(xué)生答)(教師總結(jié))(教師講解)另外還有行政區(qū)、文化區(qū)等。而在中小城市,這些部門(mén)占地面積很小,或者布局分散,形成不了相應(yīng)的功能 區(qū)。(教師提問(wèn))我們把城市功能區(qū)分了好幾種,比如說(shuō)住宅區(qū),是不是土地都是被居住地占據(jù)呢?是不是就沒(méi)有其他的功能了呢?(學(xué)生回答)不是(教師總結(jié))不是的。我們說(shuō)的住宅區(qū)只是在占地面積上,它是占絕大多數(shù),但還是有土地是被其它功能占據(jù)的,比如說(shuō)住宅區(qū)里的商店、綠化等也要占據(jù)一定的土地, 只是占的比例比較小而已。下面請(qǐng)看書(shū)上的活動(dòng)題。
(一)例題引入籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分。某隊(duì)在10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場(chǎng),則負(fù)(10-X)場(chǎng)。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場(chǎng),負(fù)Y場(chǎng)。根據(jù):勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù) 勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分得到:X+Y=10 2X+Y=16
三、宗教改革:1、背景:(1)文藝復(fù)興的影響。文藝復(fù)興中,人文主義學(xué)者盡管對(duì)宗教保持較為溫和的態(tài)度,但其以人為中心的思想極大地沖擊了天主教的精神獨(dú)裁,天主教的權(quán)威日益受到人們的懷疑。(2)天主教會(huì)對(duì)歐洲尤其是德意志的壓榨。中世紀(jì)的天主教會(huì)對(duì)人民進(jìn)行嚴(yán)密的精神統(tǒng)治,基督教信仰的核心是“原罪”和“靈魂救贖”,即人生下來(lái)就有罪,只有信仰上帝,跟隨耶穌才能得救。就“靈魂救贖”而言,最初強(qiáng)調(diào)的是個(gè)人信仰的作用,后來(lái),神學(xué)家們又加上了種種繁雜的宗教禮儀,而且必須得到神職人員的幫助,靈魂才能得救。在經(jīng)濟(jì)上,天主教會(huì)還是最大的封建主,占有大量的土地,并征收什一稅,對(duì)各國(guó)人民大肆搜刮。羅馬教廷每年從德意志搜刮的財(cái)富達(dá)30萬(wàn)古爾登(貨幣單位),相當(dāng)于“神圣羅馬帝國(guó)”皇帝每年稅收額的20倍。德意志也成了被教會(huì)榨取最嚴(yán)重的地區(qū),素有“教皇的乳?!敝Q。
一、教材分析《加強(qiáng)思想道德建設(shè)》是人教版高中政治必修一《文化生活》第十課第一框題的教學(xué)內(nèi)容。主要學(xué)習(xí)加強(qiáng)思想道德建設(shè)的原因和要求,在前后兩個(gè)框題中起到了承上啟下的作用。二、教學(xué)目標(biāo)1、知識(shí)目標(biāo)識(shí)記:社會(huì)主義思想道德建設(shè)的主要內(nèi)容。理解:加強(qiáng)社會(huì)主義思想道德建設(shè)的主要內(nèi)容必要性和重要性分析:社會(huì)主義榮辱觀的特點(diǎn),以及它和加強(qiáng)社會(huì)主義思想道德建設(shè)的內(nèi)在聯(lián)系。 2、能力目標(biāo)通過(guò)對(duì)社會(huì)主義榮辱觀的特點(diǎn)的學(xué)習(xí),提高學(xué)生多角度認(rèn)識(shí)和分析問(wèn)題的能力。3、情感、態(tài)度、價(jià)值觀目標(biāo):通過(guò)本課的學(xué)習(xí),提高對(duì)加強(qiáng)社會(huì)主義思想道德建設(shè)的認(rèn)識(shí),自覺(jué)樹(shù)立社會(huì)主義榮辱觀,做“明榮知恥”的中學(xué)生。三、教學(xué)重難點(diǎn)教學(xué)重點(diǎn):為什么要加強(qiáng)思想道德建設(shè)。教學(xué)難點(diǎn):怎樣加強(qiáng)思想道德建設(shè)。
《樹(shù)之歌》是統(tǒng)編版二年級(jí)上冊(cè)第二單元的一篇識(shí)字課文。介紹樹(shù)木特征的歸類識(shí)字歌,描寫(xiě)了楊樹(shù)、榕樹(shù)、梧桐樹(shù)……等11種樹(shù)木,表現(xiàn)了大自然樹(shù)木種類的豐富。課文安排了一組“木”字旁歸類識(shí)字。把樹(shù)木的名稱集中在一首詩(shī)歌中,讓學(xué)生在感受美麗景色、感受美好生活的同時(shí),認(rèn)識(shí)事物,認(rèn)識(shí)表示樹(shù)木的漢字,感知不同樹(shù)木的名稱。教學(xué)的過(guò)程中可引導(dǎo)學(xué)生在誦讀文本的同時(shí),體現(xiàn)多樣的識(shí)字形式,要將識(shí)字教學(xué)與閱讀文本有機(jī)融合, 在反復(fù)的讀書(shū)體會(huì)中,引導(dǎo)學(xué)生發(fā)現(xiàn)漢字規(guī)律,運(yùn)用形聲字形旁表義、聲旁表音的特點(diǎn)歸類識(shí)字,并鼓勵(lì)學(xué)生運(yùn)用已經(jīng)掌握的方法自主識(shí)字。 1.認(rèn)識(shí)“梧、桐”等15個(gè)生字,會(huì)寫(xiě)“楊、壯”等10個(gè)生字。學(xué)會(huì)運(yùn)用形聲字的特點(diǎn)自主識(shí)字。2.正確、流利地朗讀兒歌,并背誦全文。3.通過(guò)看圖和讀兒歌,初步了解11種樹(shù)木的基本特點(diǎn)。積累與樹(shù)木有關(guān)的語(yǔ)句。4.引導(dǎo)學(xué)生學(xué)會(huì)觀察身邊的事物,樹(shù)立愛(ài)護(hù)花草樹(shù)木的意識(shí)。 1.教學(xué)重點(diǎn):學(xué)會(huì)本課生字,利用形聲字特點(diǎn)掌握木字旁的8個(gè)生字。朗讀課文,背誦課文。了解不同樹(shù)木的特點(diǎn)。2.教學(xué)難點(diǎn):能按掌握形聲字的構(gòu)字特點(diǎn),了解11種樹(shù)木的基本特點(diǎn)。積累與樹(shù)木有關(guān)的語(yǔ)句。能背誦課文。 2課時(shí)
《場(chǎng)景歌》是統(tǒng)編版二年級(jí)上冊(cè)第二單元的一篇識(shí)字課文。這是一組數(shù)量詞歸類識(shí)字。把數(shù)量詞分類集中在四幅不同的圖畫(huà)之中,讓學(xué)生在感受美麗景色、感受美好生活的同時(shí),認(rèn)識(shí)事物,認(rèn)識(shí)表示事物的漢字,初步感知不同事物數(shù)量詞的表達(dá)方式。全文共五節(jié)。第一節(jié)是一幅大海風(fēng)景圖。第二節(jié)是一幅山村田園風(fēng)光圖。第三節(jié)是一幅公園景色圖。第四幅是少先隊(duì)員活動(dòng)的場(chǎng)面。教師要充分調(diào)動(dòng)學(xué)生的積極性,采用各種各樣的方法,讓學(xué)生自己認(rèn)字,朗讀。在教學(xué)的過(guò)程中,通過(guò)結(jié)合圖片和上下文,欣賞美麗景色,感受美好生活,同時(shí)認(rèn)識(shí)事物,初步感知不同事物數(shù)量詞的表達(dá)方式。 1.認(rèn)識(shí)“帆、艘”等10個(gè)生字,會(huì)寫(xiě)“處、園”等10個(gè)生字。2.正確朗讀課文。初步感受場(chǎng)景展示的美麗景色,了解不同事物數(shù)量詞的不同的表達(dá)。3.選擇照片或圖畫(huà),仿照課文,學(xué)習(xí)用數(shù)量詞表達(dá)生活中的事物。4.培養(yǎng)學(xué)生留心觀察周圍事物的習(xí)慣,培養(yǎng)學(xué)生的觀察能力和想象能力。 1.教學(xué)重點(diǎn):會(huì)認(rèn)、會(huì)寫(xiě)課文相關(guān)生字。正確朗讀課文。背誦課文。初步感受場(chǎng)景展示的美麗景色,了解不同事物量詞的不同表達(dá)。2.教學(xué)難點(diǎn):培養(yǎng)學(xué)生留心觀察周圍事物的習(xí)慣,培養(yǎng)學(xué)生的觀察能力和想象能力。學(xué)習(xí)用數(shù)量詞表達(dá)生活中的事物。 2課時(shí)
【教學(xué)目標(biāo)】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學(xué)重點(diǎn)】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W(xué)難點(diǎn)】 一元二次不等式的解法?!窘虒W(xué)設(shè)計(jì)】 1、從復(fù)習(xí)一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強(qiáng)知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的數(shù)學(xué)思維能力。【課時(shí)安排】 2課時(shí)(90分鐘)【教學(xué)過(guò)程】一、一元二次不等式的解法² 復(fù)習(xí)回顧1、根據(jù)初中所學(xué)知識(shí),填寫(xiě)下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個(gè)根有 1 個(gè)根有 0 個(gè)根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問(wèn)題:(1)當(dāng)y=0時(shí),x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點(diǎn)的坐標(biāo)是什么?(3)當(dāng)y<0時(shí),x的取值范圍是什么?總結(jié):由此看到,通過(guò)對(duì)函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集