我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以1厘米/秒的速度向 移動(dòng),點(diǎn) 從點(diǎn) 開(kāi)始,在 邊上以2厘米/秒的速度向點(diǎn) 移動(dòng).如果點(diǎn) , 分別從點(diǎn) , 同時(shí)出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長(zhǎng)度改為7cm,對(duì)本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號(hào)化,設(shè)定一個(gè)量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗(yàn)并作答(五)布置作業(yè)1、請(qǐng)欣賞一道借用蘇軾詩(shī)詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩(shī)詞(通過(guò)列方程,算出周瑜去世時(shí)的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個(gè)位三,個(gè)位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強(qiáng)調(diào)對(duì)古文化詩(shī)詞的閱讀理解,貫通數(shù)學(xué)的實(shí)際應(yīng)用。有兩種解題思路:枚舉法和方程法。
通過(guò)活動(dòng)讓學(xué)生思考:回答問(wèn)題。對(duì)學(xué)生的不同回答,只要合理,就給以認(rèn)可。設(shè)計(jì)意圖:讓學(xué)生學(xué)會(huì)有條理的表述自己的思考過(guò)程,理解三種數(shù)據(jù)都是刻畫了一組數(shù)據(jù)的平均水平。整個(gè)授課的過(guò)程中,由于問(wèn)題的難點(diǎn)進(jìn)行了分解突破,問(wèn)題的解決水到渠成。同時(shí)要學(xué)生意識(shí)到:學(xué)會(huì)用數(shù)據(jù)說(shuō)話,科學(xué)地分析身邊的事例。5.歸納小結(jié),鞏固提高。(1)列表對(duì)比平均數(shù)眾數(shù)中位數(shù)概念注意點(diǎn)(2)在生活中可用平均數(shù)、眾數(shù)和中位數(shù)這三個(gè)特征數(shù)來(lái)描述一組數(shù)據(jù)的集中趨勢(shì),它們各有不同的側(cè)重點(diǎn),需聯(lián)系實(shí)際進(jìn)行選擇,對(duì)于同一份材料,同一組數(shù)據(jù),不同的目的,應(yīng)選擇不同的數(shù)據(jù)代表。因從不同的角度進(jìn)行分析時(shí),看到的結(jié)果可能是截然不同的。作為信息的接受者,分析數(shù)據(jù)應(yīng)該從多角度對(duì)統(tǒng)計(jì)數(shù)據(jù)作出較全面的分析,從而避免機(jī)械的,片面的解釋。
1.小明調(diào)查了班級(jí)里20位同學(xué)本學(xué)期計(jì)劃購(gòu)買課外書的花費(fèi)情況,并將結(jié)果繪制成了下面的統(tǒng)計(jì)圖.(1)在這20位同學(xué)中,本學(xué)期計(jì)劃購(gòu)買課外書的花費(fèi)的眾數(shù)是多少?(2)計(jì)算這20位同學(xué)計(jì)劃購(gòu)買課外書的平均花費(fèi)是多少?你是怎么計(jì)算的?反思?交流*(3)在上面的問(wèn)題,如果不知道調(diào)查的總?cè)藬?shù),你還能求平均數(shù)嗎?2.某題(滿分為5分)的得分情況如右圖,計(jì)算此題得分的眾數(shù)、中位數(shù)和平均數(shù)。活動(dòng)4:自主反饋1.下圖反映了初三(1)班、(2)班的體育成績(jī)。(1)不用計(jì)算,根據(jù)條形統(tǒng)計(jì)圖,你能判斷哪個(gè)班學(xué)生的體育成績(jī)好一些嗎?(2)你能從圖中觀察出各班學(xué)生體育成績(jī)等級(jí)的“眾數(shù)”嗎?(3)如果依次將不及格、及格、中、良好、優(yōu)秀記為55、65、75、85、95分,分別估算一下,兩個(gè)班學(xué)生體育成績(jī)的平均值大致是多少?算一算,看看你估計(jì)的結(jié)果怎么樣?*(4)初三(1)班學(xué)生體育成績(jī)的平均數(shù)、中位數(shù)和眾數(shù)有什么關(guān)系?你能說(shuō)說(shuō)其中的理由嗎?
三、說(shuō)教法和學(xué)法:1、說(shuō)教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過(guò)程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過(guò)程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單的應(yīng)用,2、說(shuō)學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過(guò)程中給學(xué)生足夠的時(shí)間認(rèn)真、仔細(xì)地動(dòng)手書寫證明過(guò)程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時(shí),培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說(shuō)教學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程的設(shè)計(jì)有:1、問(wèn)題引入新課:七年級(jí)已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過(guò)的知識(shí)引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動(dòng)中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說(shuō)理”證明作好準(zhǔn)備,使學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于實(shí)踐,同時(shí)對(duì)新知識(shí)的學(xué)習(xí)有了期待。
【設(shè)計(jì)意圖】:這一環(huán)節(jié)的設(shè)計(jì)主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認(rèn)識(shí)概念。通過(guò)材料的閱讀,活動(dòng)的實(shí)踐,讓學(xué)生在自畫、自糾中,加深對(duì)概念的理解,培養(yǎng)學(xué)生良好的畫圖習(xí)慣。(三)例題講解學(xué)生活動(dòng)4:(由于例題都比較簡(jiǎn)單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫出圖中A、B、C、D、E各點(diǎn)的坐標(biāo)。例2、在直角坐標(biāo)系中,描出下列各點(diǎn):A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O(shè)計(jì)意圖】:例1的目的是給出點(diǎn)的位置,寫出點(diǎn)的坐標(biāo)。例2的目的是給出點(diǎn)的坐標(biāo),描出點(diǎn)。學(xué)完概念之后,馬上對(duì)概念進(jìn)行應(yīng)用,達(dá)到鞏固的目的。當(dāng)時(shí)上課時(shí)這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。
接下來(lái)請(qǐng)同學(xué)們改造這五個(gè)句子,變成“如果??,那么??”句式,其實(shí)就是一個(gè)語(yǔ)文環(huán)節(jié)中的造句,同學(xué)們很活躍,紛紛舉手發(fā)言。課堂檢測(cè)練習(xí)我用到的是課本221頁(yè)習(xí)題6.2第1、2題,有個(gè)別同學(xué)會(huì)做錯(cuò),做錯(cuò)點(diǎn)在于對(duì)判斷還把握不夠到位,還有少數(shù)同學(xué)對(duì)定義與命題的理解產(chǎn)生混亂。據(jù)此,我提出:定義與命題兩個(gè)概念該如何區(qū)別?同學(xué)們舉手發(fā)言:定義是一個(gè)描述性的概念,而命題是判斷一件事情的句子。還有同學(xué)說(shuō)道:定義就是一個(gè)“??叫??”的句式,命題就是“如果??那么??”的句式。在教學(xué)中,學(xué)生對(duì)定義與命題的把握還是比較清楚的。大部分學(xué)生可以口頭完成導(dǎo)學(xué)案設(shè)計(jì)的題目。能夠迅速的把一個(gè)命題轉(zhuǎn)化成“如果?那么?”的形式.利用疑問(wèn)句和祈使句的特點(diǎn),判定不是命題的語(yǔ)句.迅速的掌握情況還是比較可以的。
學(xué)生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算.意圖:通過(guò)學(xué)生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問(wèn)題轉(zhuǎn)化為平面最短距離問(wèn)題并利用勾股定理求解.在活動(dòng)中體驗(yàn)數(shù)學(xué)建摸,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點(diǎn)、突破難點(diǎn)的策略在教學(xué)過(guò)程中教師應(yīng)通過(guò)情景創(chuàng)設(shè),激發(fā)興趣,鼓勵(lì)引導(dǎo)學(xué)生經(jīng)歷探索過(guò)程,得出結(jié)論,從而發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力,提高學(xué)生解決實(shí)際問(wèn)題的能力.
探究活動(dòng)二的安排,是要讓學(xué)生明確只靠實(shí)驗(yàn)得出的結(jié)論,可能會(huì)以點(diǎn)帶面,從而進(jìn)一步說(shuō)明學(xué)習(xí)推理的必要性。并小結(jié)出:如果要判斷一個(gè)結(jié)論不正確只要舉一個(gè)反例就可以了。探究活動(dòng)三的安排是說(shuō)明只靠實(shí)驗(yàn)得出的結(jié)論也不可靠,必須經(jīng)過(guò)有根有據(jù)的推理才行。活動(dòng)交流:(1)在數(shù)學(xué)學(xué)習(xí)中,你用到過(guò)推理嗎?(2)在日常生活中,你用到過(guò)推理嗎?這是一座橋梁,把課堂引向推理的方法。例題的安排,可以讓學(xué)生學(xué)會(huì)簡(jiǎn)單的推理方法,同時(shí)增強(qiáng)學(xué)生的學(xué)習(xí)興趣。課堂練習(xí):①游戲:蘋果在哪里?②判斷:是誰(shuí)打破玻璃?把練習(xí)變成游戲的形式,也是為了增加課堂的趣味性,提高學(xué)生的學(xué)習(xí)興趣。課堂小結(jié):進(jìn)一步明確學(xué)習(xí)推理的必要性。課后作業(yè):①課本習(xí)題6.1:2,3。②預(yù)習(xí)下一節(jié):定義與命題
用你的語(yǔ)言描述一下配方法解一元二次方程的基本步驟和需注意的問(wèn)題。 教師引導(dǎo)學(xué)生進(jìn)行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項(xiàng)。鞏固對(duì)課堂知識(shí)的理解和掌握,同時(shí)進(jìn)一步體會(huì)解一元二次方程時(shí)降次的基本策略和轉(zhuǎn)化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內(nèi)容,又有讓學(xué)有余力的學(xué)生有思考和提升的空間。思考題為后面深入研究配方法,完善對(duì)配方法的認(rèn)識(shí)做準(zhǔn)備。 同時(shí)讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)在實(shí)際生活中的作用,感受數(shù)學(xué)的美。五、板書設(shè)計(jì)我將板書分成了兩部分,重點(diǎn)突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當(dāng)?shù)木毩?xí),簡(jiǎn)單明了,重點(diǎn)突出。六、教學(xué)評(píng)價(jià)與反思本節(jié)課我根據(jù)學(xué)生的特點(diǎn)采用合作交流探究式學(xué)西方法教學(xué),讓學(xué)生動(dòng)起來(lái),感受數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。讓學(xué)生更加愛(ài)學(xué)數(shù)學(xué)。
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且?jiàn)A角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,體驗(yàn)用類比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過(guò)程;通過(guò)畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識(shí)的興趣,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會(huì)運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來(lái)判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對(duì)應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過(guò)讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來(lái)達(dá)到加深理解判定方法2的條件的目的的.
活動(dòng)目的:通過(guò)兩個(gè)圖案設(shè)計(jì),一個(gè)是讓學(xué)生獨(dú)立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來(lái)完成,對(duì)本節(jié)課的知識(shí)進(jìn)一步鞏固應(yīng)用;另一個(gè)是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進(jìn)一步培養(yǎng)學(xué)生幾何語(yǔ)言表達(dá)能力,并積累尺規(guī)作圖的活動(dòng)經(jīng)驗(yàn)?;顒?dòng)注意事項(xiàng):根據(jù)課堂時(shí)間安排,可靈活進(jìn)行處理,既可以作為本節(jié)課的實(shí)際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價(jià)值的數(shù)學(xué)。四、 教學(xué)設(shè)計(jì)反思1.利用現(xiàn)實(shí)情景引入新課,既能體現(xiàn)數(shù)學(xué)知識(shí)與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識(shí)。而在了解基礎(chǔ)知識(shí)以后,將其進(jìn)行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會(huì)知識(shí)的漸進(jìn)發(fā)展過(guò)程,增強(qiáng)思維能力的培養(yǎng)。同時(shí),在整個(gè)探究過(guò)程中,怎樣團(tuán)結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個(gè)途徑。
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對(duì)稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱,根據(jù)點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對(duì)稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對(duì)稱.∵點(diǎn)C在對(duì)稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問(wèn):此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過(guò)點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長(zhǎng)線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過(guò)點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡(jiǎn)便.三、板書設(shè)計(jì)
一、舊知回顧1、有理數(shù)的加法法則:(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。(2)絕對(duì)值不等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。(3)互為相反數(shù)的兩數(shù)相加得零。(4)一個(gè)數(shù)與零相加,仍得這個(gè)數(shù)。注意:一個(gè)有理數(shù)由符號(hào)和絕對(duì)值兩部分組成,進(jìn)行加法運(yùn)算時(shí),應(yīng)注意確定和的符號(hào)和絕對(duì)值.
第三環(huán)節(jié)。嘗試練習(xí),信息反饋。讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時(shí)點(diǎn)撥講評(píng)?!鹘處煱才胚@一過(guò)程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。第四環(huán)節(jié)。小結(jié)階段。這是最后的一個(gè)環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學(xué)生展開(kāi)討論,得到下列結(jié)論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義。△教師安排這一過(guò)程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開(kāi)始分散。