提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中地理必修2第四章第二節(jié)工業(yè)地域的形成說課稿

  • 人教版高中語文必修3《勸學(xué)》教案2篇

    人教版高中語文必修3《勸學(xué)》教案2篇

    五.研習(xí)第一段:1.誦讀指導(dǎo)要處理好句中停頓2.請學(xué)生對照注釋翻譯本段重點詞句:學(xué)不可以已已:停止。青,取之于藍而青于藍于:從;比。木直中繩中:zhàng符合,合于。雖有槁暴,不復(fù)挺者,揉使之然也有通又,揉通煣,以火烘木,使其彎曲。然:這樣。翻譯:故木受繩則直,金就礪則利,君子博學(xué)而日參省乎己,則知明而行無過矣。所以木材經(jīng)墨線畫過(再用斧鋸加工)就直了,金屬刀劍拿到磨刀石上(磨過)就鋒利了,君子廣博地學(xué)習(xí)并且每天對自己檢驗反省,就能智慧明達,行為沒有過錯了。3.本段是從哪個角度論述中心論點的?明確:本段是從學(xué)習(xí)的意義這個角度論述中心論點的。荀子認為人的知識、道德、才能都不是天生成的,而是后天不斷學(xué)習(xí)獲得的,學(xué)習(xí)的意義十分重大,所以學(xué)習(xí)不能停止。4.本段中幾個比喻句是為了說明什么道理?學(xué)生討論發(fā)言,教師明確:

  • 人教版高中政治必修1信用工具和外匯教案

    人教版高中政治必修1信用工具和外匯教案

    (3)人民幣外匯牌價:我國通常采用100單位外幣作為標準,折算為一定數(shù)量的人民幣。如果用100單位外幣可以兌換更多的人民幣,說明外匯匯率升高;反之,則說明外匯匯率跌落。教師活動:大家知道匯率是經(jīng)常變動的,為什么匯率經(jīng)常變動?我國在美國、日本等國再三施加壓力的情況下,為什么保持匯率穩(wěn)定,人民幣不升值?學(xué)生活動:學(xué)生就老師提出的問題去閱讀教材;然后展開討論,并回答(4)保持人民幣幣值穩(wěn)定的意義教師點評:影響匯率變動的因素主要有:外匯的供求關(guān)系、通貨膨脹(或緊縮)率的差異、經(jīng)濟增長率、利率水平、國家貨幣當局的干預(yù)與管制、市場預(yù)期、外匯投機活動等。外匯在國家經(jīng)濟發(fā)展和國際貿(mào)易中具有重要的作用:通過匯率的升降調(diào)節(jié)進出口貿(mào)易;可以影響國際資本的流動方向和數(shù)量;可以影響國內(nèi)物價水平;影響外匯儲備的實際價值等。

  • 人教版高中政治必修4真正的哲學(xué)都是自己時代的精神上的精華說課稿

    人教版高中政治必修4真正的哲學(xué)都是自己時代的精神上的精華說課稿

    2、講授新課:(35分鐘)通過教材第一目的講解,讓學(xué)生明白,生活和學(xué)習(xí)中有許多蘊涵哲學(xué)道理的故事,表明哲學(xué)并不神秘總結(jié)并過渡:生活也離不開哲學(xué),哲學(xué)可以是我正確看待自然、人生、和社會的發(fā)展,從而指導(dǎo)人們正確的認識和改造世界。整個過程將伴隨著多媒體影像資料和生生對話討論以提高學(xué)生的積極性。3、課堂反饋,知識遷移。最后對本科課進行小結(jié),鞏固重點難點,將本課的哲學(xué)知識遷移到與生活相關(guān)的例子,實現(xiàn)對知識的升華以及學(xué)生的再次創(chuàng)新;可使學(xué)生更深刻地理解重點和難點,為下一框?qū)W習(xí)做好準備。4、板書設(shè)計我采用直觀板書的方法,對本課的知識網(wǎng)絡(luò)在多媒體上進行展示。盡可能的簡潔,清晰。使學(xué)生對知識框架一目了然,幫助學(xué)生構(gòu)建本課的知識結(jié)構(gòu)。5、布置作業(yè)我會留適當?shù)淖詼y題及教學(xué)案例讓同學(xué)們做課后練習(xí)和思考,檢驗學(xué)生對本課重點的掌握以及對難點的理解。并及時反饋。對學(xué)生在理解中仍有困難的知識點,我會在以后的教學(xué)中予以疏導(dǎo)。

  • 人教版高中語文必修3《愛的奉獻學(xué)習(xí)議論中的記敘》教案2篇

    人教版高中語文必修3《愛的奉獻學(xué)習(xí)議論中的記敘》教案2篇

    方法點撥教師:有的同學(xué)敘述事實論據(jù)時,不突出重點和精華,不注意取舍,水分太多,有許多的敘述描寫,有時還有詳細的故事情節(jié),文章幾乎成了記敘文,使文章的論點無法得到充分的證明,這是寫議論文的大忌。那么:議論文中的記敘有哪些特點?同學(xué)各抒己見。投影顯示:1.議論中的記敘不是單純的寫人記事,記敘文字是為議論服務(wù)的,其目的是為作者所闡明的道理提供事實依據(jù)。所以,在記敘時要求簡潔、概括,舍棄其中的細節(jié),僅僅交代清楚事件或者人物的概貌即可,一般不在各種描寫手段上下功夫,只要把能證明觀點的那個部分、側(cè)面交代清楚就行了。2.議論文中的記敘性文字不得超過總字數(shù)的1/3,否則視為文體不當。能力提升一、教師:了解了議論文中的記敘的特點,接下來我們看看今天的話題:“愛的奉獻”,你想從哪個角度立論?有哪些素材?

  • 《變形記(節(jié)選)》說課稿  2021-2022學(xué)年統(tǒng)編版高中語文必修下冊

    《變形記(節(jié)選)》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊

    五、教學(xué)過程(一)導(dǎo)入PPT 展示蒙克的畫作《吶喊》:這幅畫是挪威的表現(xiàn)主義畫家蒙克的生命組圖中最著名的一幅,我想先請大家來說一說看完這幅畫的感受?設(shè)計理念:《吶喊》是表現(xiàn)主義美術(shù)的代表作,蒙克用極度夸張的筆法,描繪了一個變了形的尖叫的人物形象,把人類的極端的孤獨和苦悶,以及那種在無垠宇宙面前的恐懼之感,表現(xiàn)得淋漓盡致。以此引出表現(xiàn)主義文學(xué)的代表作《變形記》,我們看看在卡夫卡的筆下社會和人類又是怎樣的。(二)研習(xí)文本1、走進文本,完成任務(wù)一?;顒?:從課文中篩選相關(guān)信息,為格里高爾制作一份簡歷(姓名、職業(yè)、性格、家庭成員、主要經(jīng)歷)?;顒?:概括甲蟲特點,分析其表現(xiàn)了格里高爾怎樣的生存狀態(tài)。設(shè)計理念:將甲蟲的特點與格里高爾的主要經(jīng)歷聯(lián)系起來,由此可以窺見格里高爾的生存狀態(tài),理解他“化蟲”的可能。①堅硬的甲:人的封閉,人與人、人與社會的隔膜。②大身軀、多細足:不堪生活重負。③行動困難:難以主宰自己的命運。④弱?。何⒉蛔愕赖男∪宋铩?/p>

  • 《立在地球邊上放號》《紅燭》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊

    《立在地球邊上放號》《紅燭》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊

    四、 學(xué)法指導(dǎo)1、查閱資料,了解詩人寫這首詩的處境,通過知人論世,理解詩歌。2、反復(fù)誦讀,聯(lián)系具體語境,品味詩歌的內(nèi)涵,感受詩歌的意蘊。3、欣賞詩人相關(guān)的其他作品及名言,在理解、感受詩歌的基礎(chǔ)上,領(lǐng)會詩人在詩歌中傳達出來的精神,樹立自我意識。五、教學(xué)過程環(huán)節(jié)一 常識補充1、文學(xué)革命:開始于1917年。它是晚清文學(xué)改良運動在新的歷史條件下的發(fā)展,是適應(yīng)以思想革命為主要內(nèi)容的新文化運動而發(fā)生的。是新文化運動的一個組成部分,對封建思想的批判必然地轉(zhuǎn)向?qū)Ψ饨ㄖ髁x文學(xué)的攻擊,反對文言,提倡白話,反對舊文學(xué),是提倡新文學(xué)的一場文學(xué)革命運動。在中國文學(xué)史上豎起一個鮮明的界碑,標示著古典文學(xué)的結(jié)束,現(xiàn)代文學(xué)的起始。主要從詩歌、小說、戲劇、散文四個文學(xué)領(lǐng)域開展。2、① 現(xiàn)代詩歌:指“五四運動”至中華人民共和國成立以來的詩歌。中國近現(xiàn)代詩歌的主體新詩,誕生于“五四”新文化運動。

  • 人教版高中歷史必修3建國以來的重大科技成就教案

    人教版高中歷史必修3建國以來的重大科技成就教案

    思考:1)材料1、2反映了一個什么樣的嚴重問題?(饑餓和糧食問題)2)材料3中,中國農(nóng)民為什么那樣說?(鄧小平在全國實行的以家庭聯(lián)產(chǎn)承包責(zé)任制為主要形式的責(zé)任制調(diào)動了農(nóng)民生產(chǎn)的積極性,解放了農(nóng)村生產(chǎn)力,推動了農(nóng)業(yè)的發(fā)展;袁隆平的雜交水稻提高了水稻產(chǎn)量,增加了農(nóng)民的收入,解決了農(nóng)民的吃飯問題)3)據(jù)以上材料指出,袁隆平研究的交水稻有何重大意義?(雜交稻不僅解決了中國人的吃飯問題;而且其在世界范圍的推廣,也有助于解決世界性的饑餓問題)四、計算機技術(shù)與生物技術(shù)的發(fā)展1、20世紀50年代,我國開始了計算機的研制工作;2、1983年,我國成功研制出巨型計算機“銀河-Ⅰ號”,加速了國家信息化的發(fā)展;3、1965年,中國首次人工合成結(jié)晶牛胰島素(在世界上第一次用人工方法合成出具有生物活性的蛋白質(zhì)——結(jié)晶牛胰島素) 。4、積極參與人類基因的研究(唯一的發(fā)展中國家)。

  • 人教版高中語文必修2《就任北京大學(xué)校長之演說》教案2篇

    人教版高中語文必修2《就任北京大學(xué)校長之演說》教案2篇

    (現(xiàn)狀:①對于教員,不能以誠相待,禮敬有加,只是利用耳。2段:因做官心切,對于教員,則不問其學(xué)問淺深,唯問其官階之大小。官階大者,特別歡迎,蓋唯將來畢業(yè)有人提攜。②對于同學(xué)校友,不能開誠布公,道義相勖。)他的第三點要求是,要求青年學(xué)子。這是從個人涵養(yǎng)方面來說的。尊敬師長,團結(jié)友愛,互相勉勵,共同提高,是建設(shè)良好校風(fēng)必須具備的條件。端正學(xué)風(fēng),改善校風(fēng),就是為培養(yǎng)學(xué)術(shù)研究新風(fēng)氣創(chuàng)造條件。全校上下樹立了新風(fēng)尚,學(xué)校的學(xué)術(shù)氣也就會很快濃起來。這也是貫徹“思想自由”的辦學(xué)方針,不可或缺的措施。蔡元培先生在他這次演講中,始終是圍繞著他的辦學(xué)方針來闡述的。(四)蔡先生提出兩點計劃,目的為何?思考、討論、明確:一曰改良講義,以期學(xué)有所得,能裨實用。

  • 兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 圓的標準方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的標準方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩直線的交點坐標教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點坐標教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 《包身工》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文選擇性必修中冊

    《包身工》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文選擇性必修中冊

    3、通過分析理解作者是如何在典型環(huán)境中刻畫出典型人物的。(設(shè)計意圖:因為《普通高中語文新課程標準》中要求學(xué)生把握報告文學(xué)的語言特色,所以需要分析文中重點語句的語言特色。同時,由于報告文學(xué)的藝術(shù)價值體現(xiàn)在文學(xué)性上,它不能像新聞報道那樣,只有事件梗概,它必須刻畫人物形象,必須有環(huán)境等方面的描寫,加強語言的藝術(shù)感染力,所以在教學(xué)過程中要注重對典型環(huán)境中的典型人物的分析。)三、課時安排:兩課時四、教學(xué)設(shè)計:(第一課時的教學(xué)過程)1、通過表格來對比分析報告文學(xué)與新聞的異同點。使學(xué)生明確理解到報告文學(xué)的藝術(shù)價值在于它的文學(xué)性,而其文學(xué)性主要通過對人物的刻畫、環(huán)境的描寫等方面的文學(xué)手段的綜合運用。2、為了更好的了解本文,要學(xué)生相互分享收集到的時代背景資料及作者簡介。3、讓學(xué)生快速瀏覽課文找出本文的表層結(jié)構(gòu),初步感知到本文的表層結(jié)構(gòu)是按照時間順序來敘述描寫包身工一天的活動及按事物發(fā)展的順序敘述包身工制度的產(chǎn)生發(fā)展及膨大。

上一頁123...353637383940414243444546下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!