把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計(jì)算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1?、?,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計(jì)一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時,一般應(yīng)先因式分解.【類型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個單項(xiàng)式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時,購買資金為12×1+10×9=102(萬元);當(dāng)x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實(shí)生活中的事件與數(shù)學(xué)思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計(jì)應(yīng)用一元一次不等式解決實(shí)際問題的步驟:實(shí)際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實(shí)際問題確定答案本節(jié)課通過實(shí)例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過程中,可通過類比列一元一次方程解決實(shí)際問題的方法來學(xué)習(xí),讓學(xué)生認(rèn)識到列方程與列不等式的區(qū)別與聯(lián)系.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點(diǎn)按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計(jì)1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項(xiàng);(4)合并同類項(xiàng);(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負(fù)數(shù),不等號的方向改變.這也是這節(jié)課學(xué)生容易出錯的地方.教學(xué)時要大膽放手,不要怕學(xué)生出錯,通過學(xué)生犯的錯誤引起學(xué)生注意,理解產(chǎn)生錯誤的原因,以便在以后的學(xué)習(xí)中避免出錯.
安裝及運(yùn)輸費(fèi)用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實(shí)際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計(jì)1.一元一次不等式組的解法2.一元一次不等式組的實(shí)際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時要讓學(xué)生養(yǎng)成檢驗(yàn)的習(xí)慣,感受運(yùn)用數(shù)學(xué)知識解決問題的過程,提高實(shí)際操作能力.
探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計(jì)三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過的知識來推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點(diǎn)到線段兩個端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關(guān)系,并會進(jìn)行簡單的換算.一、情境導(dǎo)入鐘表是我們生活中常見的物品,同學(xué)們,你能說出圖中每個鐘表時針與分針?biāo)傻慕嵌葐??學(xué)完了下面的內(nèi)容,就會知道答案.二、合作探究探究點(diǎn)一:角的概念及其表示方法【類型一】 對角的概念的考查下列關(guān)于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點(diǎn);④角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點(diǎn)的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關(guān),角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形,說法正確.所以只有④正確.故選A.
1.會用度量法和疊合法比較兩個角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個角的和、差、倍、分的意義,會進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個角哪個大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時,手拿一量角器逐一測量∠α的度數(shù).請你運(yùn)用所學(xué)的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點(diǎn)C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點(diǎn)A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長,根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當(dāng)于確定三角形三個頂點(diǎn)的位置.因此可先確定三角形的一條邊(即兩個頂點(diǎn)),再分別以這條邊的兩個端點(diǎn)為圓心,以已知線段長為半徑畫弧,兩弧的交點(diǎn)即為另一個頂點(diǎn).三、板書設(shè)計(jì)1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學(xué)生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學(xué)生的動手能力、語言表達(dá)能力
3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識并能畫出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分?jǐn)?shù)形式,而無理數(shù)則不能.探究點(diǎn)二:借助計(jì)算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計(jì)x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
解析:本題是要求兩個未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進(jìn)3個球的有x人,投進(jìn)4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個球的有9人,投進(jìn)4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯.三、板書設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過解決實(shí)際問題,體會數(shù)學(xué)與社會生活的密切聯(lián)系,了解數(shù)學(xué)的價值,增進(jìn)學(xué)生對數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
探究點(diǎn)三:函數(shù)的圖象洗衣機(jī)在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機(jī)內(nèi)無水).在這三個過程中,洗衣機(jī)內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機(jī)工作前洗衣機(jī)內(nèi)無水,∴A,B兩選項(xiàng)不正確,淘汰;又∵洗衣機(jī)最后排完水,∴D選項(xiàng)不正確,淘汰,所以選項(xiàng)C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設(shè)計(jì)函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解.
本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.(三)強(qiáng)化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.
② 命題的含義:判斷一件事情的句子,叫做命題,如果一個句子沒有對某一件事情作出任何判斷,那么它就不是命題.活動目的:通過課后的總結(jié),使學(xué)生對定義、命題等概念有更清楚的認(rèn)識,讓學(xué)生在頭腦中對本節(jié)課進(jìn)行系統(tǒng)的歸納與整理.教學(xué)效果:學(xué)生在有了前面對定義、特別是命題概念的學(xué)習(xí)后,能了解命題的結(jié)構(gòu),以及哪些是命題,使學(xué)生對命題的學(xué)習(xí)有了清楚的認(rèn)識。第五環(huán)節(jié) 課后練習(xí)學(xué)習(xí)小組搜集八年級數(shù)學(xué)課本中的新學(xué)的部分定義、命題,看誰找得多.四、教學(xué)反思本節(jié)課的設(shè)計(jì)具有如下特點(diǎn):(1)采用了“小品表演”的形式引入新課,意在激起學(xué)生對數(shù)學(xué)的興趣,讓學(xué)生知道,數(shù)學(xué)不是枯燥無味的。并能從表演中不同的人對“黑客”這個名詞的不同理解更好地悟出“定義”的含義。
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程組的解.目的:鼓勵學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對 “溫故而知新” 的體會,知道“學(xué)而時習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識.第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實(shí)際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.