設(shè)計說明:設(shè)計這組測驗為了反饋學(xué)生學(xué)習(xí)情況,第1題較簡單,也是為了讓提高學(xué)生學(xué)習(xí)士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學(xué)生的不同需求.教師可們采用搶答方式調(diào)動學(xué)生積極性,學(xué)生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習(xí)題A組1,2,3; B層 習(xí)題B組.設(shè)計說明:設(shè)計第1題的原因保證了知識的完整性,學(xué)生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應(yīng)用了新學(xué)知識,又給學(xué)生提供了更廣泛地思考空間.第2題,主要是讓學(xué)生進(jìn)一步鞏固新學(xué)知識,規(guī)范解題步驟. 在作業(yè)設(shè)計時,既面向全體學(xué)生,又尊重學(xué)生的個體差異,以掌握知識形成能力為主要目的.
本節(jié)課的設(shè)計是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強(qiáng)對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動性,并提高課堂效率。2、學(xué)法研究“贈人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的知識,首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運(yùn)用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題,通過基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應(yīng)該進(jìn)多少件西裝?六、課堂小結(jié):盡管隨機(jī)事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習(xí)補(bǔ)充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。
(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當(dāng)摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當(dāng)實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進(jìn)一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實驗和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗可以看到:當(dāng)重復(fù)實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動員投籃5次, 投中4次,能否說該運(yùn)動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當(dāng)摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當(dāng)實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進(jìn)一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實驗和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運(yùn)用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
6、問題的檢驗學(xué)生提出的問題和老師拓展的問題在解答過程中,學(xué)生能否真正領(lǐng)會,或領(lǐng)會的程度如何?這就需要檢驗才能了解。檢驗的方式很多,可以通過交流、調(diào)查、反思、隨堂檢測等方式進(jìn)行。我主要采用隨堂檢測的方式,把事先準(zhǔn)備好的自測題發(fā)給學(xué)生,或利用多媒體投影來進(jìn)行當(dāng)堂檢測。檢測題目不宜過多,可隨學(xué)生的課堂表現(xiàn)而有所增減,同時,把拓展性的問題作為思考題留給學(xué)生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個具有代表性的問題來完成檢驗的。安排這一環(huán)節(jié)的意圖:通過把教學(xué)內(nèi)容以問題的形式列出來,用于檢驗學(xué)生對知識點的掌握和教師教學(xué)效果的了解,幫助教師及時掌控課堂教學(xué)情況,調(diào)整教學(xué)思路和教學(xué)進(jìn)度。7、我的收獲和疑惑課程結(jié)束時,讓學(xué)生談?wù)勛约旱氖斋@以及還有哪些問題沒能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學(xué)生對本節(jié)課的內(nèi)容進(jìn)行主動的、深層次的的回顧與反思,從而加深學(xué)生對所學(xué)知識的整理、記憶與理解,同時也便于老師對課堂教學(xué)效果的及時掌握和調(diào)整以后的教學(xué)思路。
(一)自學(xué)質(zhì)疑看書 解決下面兩個問題:1.下列圖中的兩個臺階哪個更陡?你是怎么判斷的? 答:圖 的臺階更陡,理由 2.除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?
【類型一】 逆用積的乘方進(jìn)行簡便運(yùn)算計算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進(jìn)行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對公式an·bn=(ab)n要靈活運(yùn)用,對于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運(yùn)用此公式可進(jìn)行簡便運(yùn)算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大小:213×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關(guān)鍵.三、板書設(shè)計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運(yùn)用在本節(jié)的教學(xué)過程中教師可以采用與前面相同的方式展開教學(xué).教師在講解積的乘方公式的應(yīng)用時,再補(bǔ)充講解積的乘方公式的逆運(yùn)算:an·bn=(ab)n,同時教師為了提高學(xué)生的運(yùn)算速度和應(yīng)用能力,也可以補(bǔ)充講解:當(dāng)n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當(dāng)n為偶數(shù)時,(-a)n=an(n為正整數(shù))
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設(shè)計1.頻率及其穩(wěn)定性:在大量重復(fù)試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復(fù)實驗下,隨機(jī)事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運(yùn)用其解決實際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:根據(jù)“全等三角形的對應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設(shè)計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對應(yīng)角、對應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習(xí)來理解全等三角形的性質(zhì)并滲透符號語言推理.通過實例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡單的實際問題
方法總結(jié):作平移圖形時,找關(guān)鍵點的對應(yīng)點是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點;②確定圖形中的關(guān)鍵點;③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運(yùn)動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運(yùn)用到生活中.
通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費(fèi)的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設(shè)計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類似,因此在教學(xué)中可以利用該優(yōu)勢展開教學(xué),在探究過程中可以進(jìn)一步發(fā)揮學(xué)生的主動性,盡可能地讓學(xué)生在已有知識的基礎(chǔ)上,通過自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識,進(jìn)而理解運(yùn)算法則
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設(shè)計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練.
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此題中的不等關(guān)系:現(xiàn)在已存有55元,計劃從現(xiàn)在起以后每個月節(jié)省20元.若此學(xué)生平板電腦至少需要350元.列出不等式20x+55≥350.故選B.方法總結(jié):用不等式表示數(shù)量關(guān)系時,要找準(zhǔn)題中表示不等關(guān)系的兩個量,并用代數(shù)式表示;正確理解題中的關(guān)鍵詞,如負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過、至少、至多等的含義.三、板書設(shè)計1.不等式的概念2.列不等式(1)找準(zhǔn)題目中不等關(guān)系的兩個量,并且用代數(shù)式表示;(2)正確理解題目中的關(guān)鍵詞語的確切含義;(3)用與題意符合的不等號將表示不等關(guān)系的兩個量的代數(shù)式連接起來;(4)要正確理解常見不等式基本語言的含義.本節(jié)課通過實際問題引入不等式,并用不等式表示數(shù)量關(guān)系.要注意常用的關(guān)鍵詞的含義:負(fù)數(shù)、非負(fù)數(shù)、正數(shù)、大于、不大于、小于、不小于、不足、不超過,這些關(guān)鍵詞中如果含有“不”“非”等文字,一般應(yīng)包括“=”,這也是學(xué)生容易出錯的地方.
當(dāng)然,在討論的過程中,對個別學(xué)生要及時點撥利用相似三角形對應(yīng)邊的關(guān)系來求AD,至于S與x的關(guān)系式自然是水到渠成了。接著讓同學(xué)們以小組為單位,派出代表展示自己的討論成果。然后我進(jìn)一步拋出重點問題3)這里S與x是一種什么函數(shù)關(guān)系?當(dāng)x 取何值時,S的值最大?最大值是多少?這個例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長和寬,通過學(xué)生的思考、討論、大家都明白了S與x的關(guān)系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實際問題轉(zhuǎn)化為數(shù)學(xué)問題了.簡單的小組交流過后,同學(xué)們爭先恐后表達(dá)自己的觀點:有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點坐標(biāo)求出了最大面積。 ,我及時的鼓勵學(xué)生:大家真的很棒,老師為你們驕傲,請再接再厲。