本節(jié)內(nèi)容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.
一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
問題導學類比橢圓幾何性質(zhì)的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
教學過程: 一、導入:師生問好!二、新課教學:1、教師課前要了解各小組的學習情況:戲種以及相關知識等有關資料的準備情況。2、播放歌曲《看大戲》提問:上節(jié)課我們了解了什么戲???今天哪個小組的同學向大家介紹他們學習的內(nèi)容? 3、欣賞《花木蘭》選段──誰說女子不如男設問的問題:▲簡單了解《花木蘭》的劇情?!3焊惺芤魳凤L格。 4、欣賞豫劇《誰說女子不如男》設問的問題:▲揭示曲名:《誰說女子不如男》?!鴺非男捎蓭讉€部分組成?各部分的速度、情緒怎樣?分別描繪了怎樣的情景?▲這首戲曲的主要伴奏樂器是什么?▲猜一猜:這首樂曲采用哪個戲種的基本音調(diào)?
一、中華人民共和國從世界銀行申請獲得貸款,用于支付 項目的費用。部分貸款將用于支付工程建筑、 等各種合同。所有依世界銀行指導原則具有資格的國家,都可參加招標。二、中國 公司(以下簡稱A公司)邀請具有資格的投標者提供密封的標書,提供完成合同工程所需的勞力、材料、設備和服務。三、具有資格的投標者可從以下地址獲得更多的信息,或參看招標文件:中國A公司(地址)四、第一位具有資格的投標者在交納 美元(或人民幣),并提交書面申請后,均可從上述地址獲得招標文件。五、每一份標書都要附一份投標保證書,且應不遲于 (時間)提交給A公司。六、所有標書將在 (時間)當著投標者代表的面開標。七、如果具有資格的國外投標者希望與一位中國國內(nèi)的承包人組建合資公司,需在投標截止日期前30天提出要求。業(yè)主有權決定是否同意選定的國內(nèi)承包人。八、標前會議將在 (時間) (地址)召開。投標者須知一、工程概述(根據(jù)具體情況寫)二、資金來源
【教學目標】1.了解韓愈關于尊師重道的論述和本文的思想意義。2.學習借鑒本文正反對比的論證方法。3.積累文言知識,掌握實詞“傳、師、從”,虛詞“以、也、則、于、乎、所以”等詞語的意義和用法,區(qū)別古今異義詞語。4.樹立尊師重教的思想,培養(yǎng)謙虛好學的風氣?!窘虒W重點和難點】1.了解文章的整體思路。2.學習本文正反對比論證的方法?!窘虒W方法】教師講授;學生自主探究;多媒體輔助?!菊n時分配】兩課時?!窘虒W過程】第一課時一、導入并解題初中時我們學過一篇課文叫《馬說》,《馬說》實際上是“說馬”,今天,我們來學習一篇“說老師”,說“從師風尚”的文章,叫《師說》?!罢f”是一種文體,偏重于議論,可先敘后議,也可夾敘夾議。
【學習目標】1.知識與技能:知道氧氣的制取及檢驗方法,復習鞏固氧氣的相關性質(zhì)。2.過程與方法:通過“探究能使帶火星木條復燃所需氧氣的最低體積分數(shù)”的探究性學習,學習科學探究的基本方法。3.情感態(tài)度與價值觀:提高實驗設計的能力和合作意識,復習鞏固相關的基本操作,培養(yǎng)學習化學的興趣?!緦W習重點】氧氣的實驗室制取操作步驟和性質(zhì)檢驗?!緦W習難點】實驗操作過程中的注意事項。【課前準備】《精英新課堂》:預習學生用書的“早預習先起步”。《名師測控》:預習贈送的《提分寶典》。情景導入 生成問題1.復習引入:實驗室用高錳酸鉀制取氧氣的反應原理是什么?操作步驟有哪些?2.明確學習目標,由學生對學習目標進行解讀。合作探究 生成能力閱讀課本P45~P46的內(nèi)容。提出問題:實驗室加熱高錳酸鉀制取氧氣的實驗中,使用了哪些儀器?哪部分是氣體發(fā)生裝置?哪部分是氣體收集裝置?為什么可用排水法收集氣體?討論交流:結合化學實驗基本操作和氧氣的性質(zhì)討論歸納。
【教學目標】知識目標:⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負號;⑶掌握界限角的三角函數(shù)值.能力目標:⑴會利用定義求任意角的三角函數(shù)值;⑵會判斷任意角三角函數(shù)的正負號;⑶培養(yǎng)學生的觀察能力.【教學重點】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號;⑶特殊角的三角函數(shù)值.【教學難點】任意角的三角函數(shù)值符號的確定.【教學設計】(1)在知識回顧中推廣得到新知識;(2)數(shù)形結合探求三角函數(shù)的定義域;(3)利用定義認識各象限角三角函數(shù)的正負號;(4)數(shù)形結合認識界限角的三角函數(shù)值;(5)問題引領,師生互動.在問題的思考和交流中,提升能力.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設情境 興趣導入 問題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 5*動腦思考 探索新知 由同角三角函數(shù)關系,知 , 當時,得到 (1.5) 利用誘導公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應使式子的左右兩端都有意義. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進行轉換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應用公式.要注意應用這種變形方法來解決問題. 引領 講解 說明 引領 分析 說明 啟發(fā) 引導 啟發(fā) 分析 觀察 思考 主動 求解 觀察 思考 理解 口答 注意 觀察 學生 是否 理解 知識 點 學生 自我 發(fā)現(xiàn) 歸納 25
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(一) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內(nèi)兩條直線的位置關系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時,“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導 分析 了解 思考 啟發(fā) 學生思考*動腦思考 探索新知 【新知識】 當兩條直線、的斜率都存在且都不為0時(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當直線、的斜率都是0時(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當兩條直線、的斜率都不存在時(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時,兩條直線相交. 由上面的討論知,當直線、的斜率都存在時,設,,則 兩個方程的系數(shù)關系兩條直線的位置關系相交平行重合 當兩條直線的斜率都存在時,就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 理解 思考 理解 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質(zhì) *創(chuàng)設情境 興趣導入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個平面內(nèi). 圖9?13 觀察教室中的物體,你能否抽象出這種位置關系的兩條直線? 介紹 質(zhì)疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 2*動腦思考 探索新知 在同一個平面內(nèi)的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個平面內(nèi)的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請畫出實物圖) 受實驗的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書本,演示圖9?15(2)的異面直線位置關系. 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 5
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設情境 興趣導入 在圖9?30所示的長方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點P,過點P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質(zhì)疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經(jīng)過空間任意一點分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡便,經(jīng)常取一條直線與過另一條直線的平面的交點作為點(如圖9?31(2)) (1) 圖9-31(2) 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 12*鞏固知識 典型例題 例1 如圖9?32所示的長方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因為 ∥,所以為異面直線與所成的角.即所求角為. (2)因為∥,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說明 強調(diào) 引領 講解 說明 觀察 思考 主動 求解 通過例題進一步領會 17
一、活動內(nèi)容分析西歐從5世紀末至9世紀歷經(jīng)四個世紀完成了由奴隸制度向封建制度的轉變,西歐中世紀即西歐的封建社會,形成了與中國封建社會不同的特點。理解這些特點,將有助于學生理解西歐在世界上最早進入資本主義社會的原因。盡管神學世界觀籠罩了西方中世紀,是黑暗的,但是應看到,自古代流傳下來的政治思想傳統(tǒng)如平等、自由、民主、法制等思想史都以不同的形式保存下來。歐洲的中世紀表面上看起來是一個陰森森的一千年(五百年到一千五百年),但實際上確實孕育了西方近代文明的重要時期。從探究活動的內(nèi)容上看與第二單元的古代希臘羅馬的政治制度及第三單元近代西方資本主義政治制度的確立與發(fā)展明確相關,有承上啟下的作用。二、活動重點設計理解西歐封建社會的政治特點及對后世的影響;正確認識基督教文明