提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

北師大初中數(shù)學(xué)八年級(jí)上冊(cè)建立平面直角坐標(biāo)系確定點(diǎn)的坐標(biāo)2教案

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價(jià),無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)營銷問題及平均變化率問題與一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)營銷問題及平均變化率問題與一元二次方程2教案

    5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價(jià),無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)利用一元二次方程解決面積問題2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)利用一元二次方程解決面積問題2教案

    四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測(cè)設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長方形拼成,則每個(gè)小長方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計(jì)劃新建一塊長9米、寬7米的長方形花圃.(1)若請(qǐng)你在這塊空地上設(shè)計(jì)一個(gè)長方形花圃,使它的面積比學(xué)校計(jì)劃新建的長方形花圃的面積多1平方米,請(qǐng)你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請(qǐng)求出長方形花圃的長和寬;如果不能,請(qǐng)說明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

  • 北師大版小學(xué)數(shù)學(xué)四年級(jí)上冊(cè)《確定位置》說課稿

    北師大版小學(xué)數(shù)學(xué)四年級(jí)上冊(cè)《確定位置》說課稿

    一、設(shè)計(jì)理念結(jié)合新課標(biāo)的要求,《確定位置》這一課,我主要體現(xiàn)了以下設(shè)計(jì)理念:1、遵循小學(xué)生的認(rèn)知規(guī)律,實(shí)施“現(xiàn)實(shí)數(shù)學(xué)原理”,體現(xiàn)數(shù)學(xué)知識(shí)從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的認(rèn)知過程。2、課堂教學(xué)中以學(xué)生為主體,注重知識(shí)的自然生成,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的能力。3、課堂教學(xué)充分體現(xiàn)數(shù)學(xué)源于生活,用于生活,體現(xiàn)學(xué)習(xí)數(shù)學(xué)的價(jià)值。二、教材簡析《確定位置》是北師大版四年級(jí)數(shù)學(xué)上冊(cè)第5單元《方向與位置》的內(nèi)容。本課主要通過用數(shù)對(duì)來表示和確定位置的學(xué)習(xí),提高學(xué)生的空間觀念,并建立初步的數(shù)形結(jié)合思想,對(duì)認(rèn)識(shí)生活周圍的環(huán)境有較大的作用。三、學(xué)情分析。四年級(jí)學(xué)生之前已經(jīng)有“列、排”的初步認(rèn)識(shí),但對(duì)“數(shù)對(duì)”這樣的抽象知識(shí)沒有絲毫的基礎(chǔ)。但是,四年級(jí)學(xué)生有一定的生活經(jīng)驗(yàn),因此,從生活現(xiàn)實(shí)出發(fā),創(chuàng)設(shè)學(xué)生熟悉的教學(xué)情境,充分發(fā)揮學(xué)生的主體作用,就能實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo)。

  • 北師大初中八年級(jí)數(shù)學(xué)下冊(cè)一元一次不等式與一次函數(shù)的綜合應(yīng)用教案

    北師大初中八年級(jí)數(shù)學(xué)下冊(cè)一元一次不等式與一次函數(shù)的綜合應(yīng)用教案

    解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過求解不等式確定最值,求最值時(shí)要注意自變量的取值范圍.解:設(shè)購進(jìn)A種樹苗x棵,則購進(jìn)B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進(jìn)A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費(fèi)用為80x+60(17-x)=20x+1020(元),費(fèi)用最省需x取最小整數(shù)9,此時(shí)17-x=17-9=8,此時(shí)所需費(fèi)用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費(fèi)用最省,此方案所需費(fèi)用1200元.三、板書設(shè)計(jì)一元一次不等式與一次函數(shù)關(guān)系的實(shí)際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時(shí)結(jié)合生活中的實(shí)例組織學(xué)生進(jìn)行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問題的能力,從新課到練習(xí)都充分調(diào)動(dòng)了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個(gè)一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的計(jì)算1教案

    如圖,課外數(shù)學(xué)小組要測(cè)量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們?cè)贏處測(cè)得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測(cè)得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請(qǐng)你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)三角函數(shù)的應(yīng)用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測(cè)得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)弧長及扇形的面積教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對(duì)的弧長和扇形面積的計(jì)算公式并熟練掌握它們的應(yīng)用;(重點(diǎn))2.通過復(fù)習(xí)圓的周長、圓的面積公式,探索n°的圓心角所對(duì)的弧長l=nπR180和扇形面積S扇=nπR2360的計(jì)算公式,并應(yīng)用這些公式解決一些問題.(難點(diǎn))一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計(jì)算它所對(duì)的弧長呢?二、合作探究探究點(diǎn)一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)解直角三角形1教案

    方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)利用三角函數(shù)測(cè)高2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)利用三角函數(shù)測(cè)高2教案

    問題2、如何用測(cè)角儀測(cè)量一個(gè)低處物體的俯角呢?和測(cè)量仰角的步驟是一樣的,只不過測(cè)量俯角時(shí),轉(zhuǎn)動(dòng)度盤,使度盤的直徑對(duì)準(zhǔn)低處的目標(biāo),記下此時(shí)鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動(dòng)三:測(cè)量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測(cè)得測(cè)點(diǎn)與被測(cè)物體底部之間的距離.要測(cè)旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測(cè)點(diǎn)A處安置測(cè)傾器(即測(cè)角儀),測(cè)得M的仰角∠MCE=α.2.量出測(cè)點(diǎn)A到物體底部N的水平距離AN=l.3.量出測(cè)傾器(即測(cè)角儀)的高度AC=a(即頂線PQ成水平位置時(shí),它與地面的距離).根據(jù)測(cè)量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因?yàn)镹E=AC=a,所以MN=ME+EN=l·tanα+a.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    (3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡單的一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡單的一元二次方程1教案

    探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)利用一元二次方程解決面積問題1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)利用一元二次方程解決面積問題1教案

    ∴此方程無解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對(duì)于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)幾何問題及數(shù)字問題與一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)幾何問題及數(shù)字問題與一元二次方程2教案

    三、課后自測(cè):1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動(dòng)點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng)。經(jīng)過多長時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開始沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移 動(dòng)過程中始終保持DE∥BC,DF∥AC,問點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程2教案

    【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北師大版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)《確定位置》說課稿

    北師大版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)《確定位置》說課稿

    1、說課內(nèi)容:北師大版小學(xué)數(shù)學(xué)教科書四年級(jí)上冊(cè)第80-81頁2、教學(xué)內(nèi)容的地位、作用和意義本課的教學(xué)內(nèi)容是北師大版數(shù)學(xué)四年級(jí)上冊(cè)第六單元內(nèi)容,之前已經(jīng)學(xué)習(xí)了前后,左右,上下等表示物體具體位置及簡單路線等知識(shí)的基礎(chǔ)上,讓學(xué)生在具體的情境中,進(jìn)一步探索確定位置的方法,并能在方格紙上用“數(shù)對(duì)”確定位置,是以前內(nèi)容的發(fā)展,它對(duì)提高學(xué)生的空間觀念,認(rèn)識(shí)周圍環(huán)境都有較大的作用,因此,針對(duì)本節(jié)課的特點(diǎn)我制定了如下的教學(xué)目標(biāo):3、教學(xué)目標(biāo)(1)能在具體的情境中,探索確定位置的方法,說出某一物體的位置。(2)能在方格紙上用“數(shù)對(duì)”確定位置。(3)在合作與交流的過程中獲得良好的情感體驗(yàn)。4、教學(xué)重點(diǎn):學(xué)會(huì)用數(shù)對(duì)的方法在方格紙上確定能夠事物的位置,理解數(shù)對(duì)的意義及方法。5、教學(xué)難點(diǎn):正確地用數(shù)對(duì)描述物體的具體位置。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)與一元二次方程2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)與一元二次方程2教案

    教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)商品利潤最大問題2教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)商品利潤最大問題2教案

    (8)物價(jià)部門規(guī)定,此新型通訊產(chǎn)品售價(jià)不得高于每件80元。在此情況下,售價(jià)定為多少元時(shí),該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計(jì)劃年初投入進(jìn)貨成本m不超過200萬元,請(qǐng)你分析一下,售價(jià)定為多少元,公司獲利最大?售價(jià)定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進(jìn)時(shí)的單價(jià)是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價(jià)不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?

上一頁123...111213141516171819202122下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!