提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

幼兒園中班安全教案:注意交通安全

  • 北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中九年級數(shù)學下冊切線的判定及三角形的內(nèi)切圓教案

    北師大初中九年級數(shù)學下冊切線的判定及三角形的內(nèi)切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內(nèi)心的性質,以及圓周角定理.

  • 北師大初中九年級數(shù)學下冊解直角三角形2教案

    北師大初中九年級數(shù)學下冊解直角三角形2教案

    首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

  • 北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內(nèi)容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    ③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數(shù)關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中九年級數(shù)學下冊商品利潤最大問題1教案

    北師大初中九年級數(shù)學下冊商品利潤最大問題1教案

    (2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結合二次函數(shù)與一次函數(shù)的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關鍵.

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級數(shù)學下冊圓內(nèi)接正多邊形教案

    北師大初中九年級數(shù)學下冊圓內(nèi)接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

  • 北師大初中九年級數(shù)學下冊直線和圓的位置關系及切線的性質教案

    北師大初中九年級數(shù)學下冊直線和圓的位置關系及切線的性質教案

    解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

  • 教師優(yōu)秀教案評比活動實施方案

    教師優(yōu)秀教案評比活動實施方案

    為進一步加強我校教學常規(guī)管理,規(guī)范教師備課環(huán)節(jié),優(yōu)化課堂教學設計,改進教學方法,全面提高教學質量,按照學期初計劃,學校決定開展教案展示及優(yōu)秀教案評比活動,具體方案如下:一、指導思想堅持求真務實思想和效能化原則,以課程方案為指導,以課程標準、考試說明為準繩,以提高教學質量為核心目標,以提升課堂教學育人效能為出發(fā)點和落腳點,以優(yōu)秀教案評選為抓手,拉動學校常規(guī)教學研究環(huán)節(jié)的深化、細化、精致化。通過有效推廣學習優(yōu)質課程教學資源,促進教師專業(yè)發(fā)展和教育質量提升。堅持源于課堂實踐,優(yōu)中選優(yōu),持續(xù)完善的原則,確保征集教案精益求精、實用好用。二、參賽對象:學校部分科任教師。三、活動時間:2018年6月四、實施方案教案評比1.教務科組織教師學習學校制定的《優(yōu)秀教案評比標準》。2.各教研組組織教師參照《優(yōu)秀教案評比標準》書寫教案。3.各教研組對本組教師書寫教案進行初評。初評分一、二、三等三個等級(一等占25%,二等占35%,三等占40%),選送評為一等的教師的教案(1-2位教師的)到教務科集中參評。4.教務科組織專門人員對各教研組選送的教案進行評比。評出1—3位教師的教案為優(yōu)秀教案。

  • 人教部編版語文九年級上冊論教養(yǎng)教案

    人教部編版語文九年級上冊論教養(yǎng)教案

    [疑難探究]風度、優(yōu)雅與教養(yǎng)有怎樣的關系?在社會交往中,一個人的談吐是否得體,舉止是否有度,怎樣打扮才合適,綜合決定一個人是否有風度,這也是教養(yǎng)的具體體現(xiàn)。有些人錯誤地認為優(yōu)雅風度就是矯揉造作、忸怩作態(tài)和附庸風雅,作者認為這是因為這些人并沒有理解風度和優(yōu)雅的真正內(nèi)涵——那就是“不應該妨礙他人的生活,要讓大家都有良好的自我感覺”,在許多場合要注重禮儀,行為得當,“動作舉止、衣裝服飾、走路的步態(tài),一切都要有分寸,力求優(yōu)雅”。優(yōu)雅的本質是“社會共享的”,而不僅僅是“徒有其表的舉止”。作者認為,“敬重社會,珍惜大自然,甚至珍惜動物,珍惜花草樹木,珍惜當?shù)氐拿利愶L光,珍惜你居住地的歷史,等等”,以敬重的態(tài)度對待他人、環(huán)境,再加以得體的言行舉止和隨機應變的智慧,一個人就能夠成為有風度而又優(yōu)雅的人。簡而言之,風度和優(yōu)雅的底色就是教養(yǎng),是心靈世界真善美的折射。文章就此展開的論述層層推進,解釋了風度和優(yōu)雅源于教養(yǎng),教養(yǎng)的核心就是敬重、珍惜和愛,做有教養(yǎng)的人應是我們追求的目標??傊甜B(yǎng)修之于內(nèi),風度形之于外。

  • 小學生綜合實踐活動教案設計方案

    小學生綜合實踐活動教案設計方案

    (1)第一環(huán)節(jié):講解活動主題,提出問題討論   1.讓學生們說一說自己有哪些習慣?!   ?.老師根據(jù)學生發(fā)言,對習慣進行簡單的分類,如分為生活習慣和學習習慣,好的習慣和壞的習慣等等,并在黑板上進行板書,大綱式列出來?!?.老師進行歸納小結:習慣是一種態(tài)度,同學們說的習慣中,有生活習慣、有學習習慣,有些是好的習慣,有的是壞的習慣。其實從我們出生的那一天,我們就開始有意無意地養(yǎng)成習慣......比如今天,當我們走進課堂,其實就已經(jīng)開始了“好好學習”這個習慣養(yǎng)成的第一步....

  • 小學生綜合實踐活動教案設計方案

    小學生綜合實踐活動教案設計方案

    (1)第一環(huán)節(jié):講解活動主題,提出問題討論   1.讓學生們說一說自己有哪些習慣?!   ?.老師根據(jù)學生發(fā)言,對習慣進行簡單的分類,如分為生活習慣和學習習慣,好的習慣和壞的習慣等等,并在黑板上進行板書,大綱式列出來?!?.老師進行歸納小結:習慣是一種態(tài)度,同學們說的習慣中,有生活習慣、有學習習慣,有些是好的習慣,有的是壞的習慣。其實從我們出生的那一天,我們就開始有意無意地養(yǎng)成習慣......比如今天,當我們走進課堂,其實就已經(jīng)開始了“好好學習”這個習慣養(yǎng)成的第一步....

  • 平行線的性質定理和判定定理教案教學設計

    平行線的性質定理和判定定理教案教學設計

    1、互逆命題:在兩個命題中,如果第一個命題的條件是第二個命題的 ,而第一個命題的結論是第二個命題的 ,那么這兩個命題互逆命題,如果把其中一個命題叫做原命題,那么另一個命題叫做它的 .2、互逆定理:如果一個定理的逆命題也是 ,那么這個逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學習診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).

  • 數(shù)據(jù)的收集與整理 3 數(shù)據(jù)的表示教案教學設計

    數(shù)據(jù)的收集與整理 3 數(shù)據(jù)的表示教案教學設計

    創(chuàng)設情境,導入新課:你對母親知多少師問1:我們5月份剛過了一個重要的節(jié)日,你知道是什么嗎?----母親節(jié)。師問2:那你知道媽媽的生日嗎?(舉手示意),每個媽媽都知道自己孩子的生日,請不知道的同學回家了解一下,多關心一下自己的父母。師問3:那你知道媽媽最愛吃的菜嗎?你可以選擇知道、不知道或者是沒有愛吃的(拖動白板上相對應的表情符號)。請大家用不同的手勢表示出來。我找3名同學統(tǒng)計各組的數(shù)據(jù),寫在黑板上(隨機找3名學生數(shù)人數(shù))。下面我來隨機采訪一下:你媽媽最喜歡吃的菜是什么?(教師隨機采訪,結合營養(yǎng)搭配和感恩教育)

  • 利用計算器進行有理數(shù)的計算教案教學設計

    利用計算器進行有理數(shù)的計算教案教學設計

    計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標明了這個鍵的功能。我們看鍵盤上標有的鍵,是開機鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關機鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當前顯示的數(shù)與符號。的功能是完成運算或執(zhí)行命令。是運算鍵,按一下這個鍵,計算器就執(zhí)行加法運算。

上一頁123...189190191192193194195196197198199200下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!