l.知識與技能:(1)知道摩擦力產生的條件。(2)能在簡單問題中,根據物體的運動狀態(tài),判斷靜摩擦力的有無、大小和方向;知道存在著最大靜摩擦力。(3)掌握動磨擦因數(shù),會在具體問題中計算滑動磨擦力,掌握判定摩擦力方向的方法。(4)知道影響到摩擦因數(shù)的因素。2.過程與方法:通過觀察演示實驗,概括出摩擦力產生的條件及摩擦力的特點,培養(yǎng)學生的觀察、概括能力。通過靜摩擦力與滑動摩擦力的區(qū)別對比,培養(yǎng)學生分析綜合能力。3.情感態(tài)度價值觀:在分析物體所受摩擦力時,突出主要矛盾,忽略次要因素及無關因素,總結出摩擦力產生的條件和規(guī)律。二、重點、難點分析1.本節(jié)課的內容分滑動摩擦力和靜摩擦力兩部分。重點是摩擦力產生的條件、特性和規(guī)律,通過演示實驗得出關系f=μN。2.難點是學生有初中的知識,往往誤認為壓力N的大小總是跟滑動物體所受的重力相等,因此必須指出只有當兩物體的接觸面垂直,物體在水平拉力作用下,沿水平面滑動時,壓力N的大小才跟物體所受的重力相等。
3.進一步體會力是產生加速度的原因,并通過牛頓第二定律來理解勻速圓周運動、變速圓周運動及一般曲線運動的各自特點。(三)、情感、態(tài)度與價值觀1.在實驗中,培養(yǎng)學生動手、探究的習慣。2.體會實驗的意義,感受成功的快樂,激發(fā)學生探究問題的熱情、樂于學習的品質。教學重點1.體會牛頓第二定律在向心力上的應用。2.明確向心力的意義、作用、公式及其變形,并經行計算。教學難點1.對向心力的理解及來源的尋找。2.運用向心力、向心加速度的知識解決圓周運動問題。教學過程(一)、 引入新課:復習提問:勻速圓周運動的物體的加速度——向心加速度,它的方向和大小有何特點呢?學生回答后進一步引導:那做勻速圓周運動物體的受力有什么特點呢?是什么力使物體做圓周運動而不沿直線飛出?請同學們先閱讀教材
一般情況下,凡是支持物對物體的支持力,都是支持物因發(fā)生形變而對物體產生彈力。所以支持力的方向總是垂直于支持面而指向被支持的物體。例1:放在水平桌面上的書書由于重力的作用而壓迫桌面,使書和桌面同時發(fā)生微小形變,要恢復原狀,對桌面產生垂直于桌面向下的彈力f1,這就是書對桌面的壓力;桌面由于發(fā)生微小的形變,對書產生垂直于書面向上的彈力f2,這就是桌面對書的支持力。學生分析:靜止地放在傾斜木板上的書,書對木板的壓力和木板對書的支持力。并畫出力的示意圖。結論:壓力、支持力都是彈力。壓力的方向總是垂直于支持面而指向被壓的物體,支持力的方向總是垂直于支持面而指向被支持的物體。引導學生分析靜止時,懸繩對重物的拉力及方向。引導得出:懸掛物由于重力的作用而拉緊懸繩,使重物、懸繩同時發(fā)生微小的形變。重物由于發(fā)生微小的形變,對懸繩產生豎直向下的彈力f1,這是物對繩的拉力;懸繩由于發(fā)生微小形變,對物產生豎直向上的彈力f2,這就是繩對物體的拉力。
一、教材內容經全國中小學教材審定委員會2004年初審查通過,人教育出版社出版的普通高中課程標準實驗教科書《物理必修①》,第三章第5節(jié)內容“力的分解”。二、教學目標1.知識與技能(1)理解分力的概念,理解力的分解是力的合成的逆運算,遵循平行四邊形定則。(2)初步掌握一般情況下力的分解要根據實際需要來確定分力的方向。(3)會用作圖法和直角三角形的知識求分力。(4)能區(qū)別矢量和標量,知道三角形定則,了解三角形定則與平行四邊形定則的實質是一樣的。2.過程與方法(1)進一步領會“等效替代”的思想方法。(2)通過探究嘗試發(fā)現(xiàn)問題、探索問題、解決問題能力。(3)掌握應用數(shù)學知識解決物理問題的能力。3.情感態(tài)度與價值觀(1)通過猜測與探究享受成功的快樂。(2)感受物理就在身邊,有將物理知識應用于生活和生產實驗的意識。三、教學重點、難點在具體問題中如何根據力的實際作用效果和平行四邊形定則進行力的分解。
1.用CAI課件模擬汽車的啟動過程。師生共同討論:①如果作用在物體上的力為恒力,且物體以勻速運動,則力對物體做功的功率保持不變。此情況下,任意一段時間內的平均功率與任一瞬時的瞬時功率都是相同的。②很多動力機器通常有一個額定功率,且通常使其在額定功率狀態(tài)工作(如汽車),根據P=FV可知:當路面阻力較小時,牽引力也小,速度大,即汽車可以跑得快些;當路面阻力較大,或爬坡時,需要比較大的牽引力,速度必須小。這就是爬坡時汽車換低速擋的道理。③如果動力機器在實際功率小于額定功率的條件下工作,例如汽車剛剛起動后的一段時間內,速度逐漸增大過程中,牽引力仍可增大,即F和v可以同時增大,但是這一情況應以二者乘積等于額定功率為限度,即當實際功率大于額定功率以后,這種情況不可能實現(xiàn)。
(五)平拋運動規(guī)律的應用例1:一架老式飛機在高出海面45m的高處,以80m/s的速度水平飛行,為了使飛機上投下的炸彈落在停在海面上的敵船,應該在與轟炸目標的水平距離為多遠的地方投彈?不計空氣阻力。分析:對于這道題我們可以從以下幾個方面來考慮:(1)從水平飛行的飛機上投下的炸彈,做什么運動?為什么?(2)炸彈的這種運動可分解為哪兩個什么樣的分運動?3)要想使炸彈投到指定的目標處,你認為炸彈落地前在水平方向通過的距離與投彈時飛機離目標的水平距離之間有什么關系?拓展:1、式飛機在高出海面45m的高處,以80m/s的速度水平飛行,尾追一艘以15m/s逃逸的敵船,為了使飛機上投下的炸彈正好擊中敵船,應該在與轟炸目標的水平距離為多遠的地方投彈?不計空氣阻力。2、在一次摩托車跨越壕溝的表演中,摩托車從壕溝的一側以速度v=40m/s沿水平方向向另一側,壕溝兩側的高度及寬度如圖所示,摩托車可看做質點,不計空氣阻力。(1)判斷摩托車能否跨越壕溝?請計算說明(2)若能跨過,求落地速度?
《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數(shù)的奇偶性及其幾何意義;2、學會運用函數(shù)圖象理解和研究函數(shù)的性質;3、學會判斷函數(shù)的奇偶性.數(shù)學學科素養(yǎng)1.數(shù)學抽象:用數(shù)學語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據分析:利用圖像求奇偶函數(shù);5.數(shù)學建模:在具體問題情境中,運用數(shù)形結合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。
一、復習回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質,理解它的關鍵就是通過實例使學生認識對數(shù)式與指數(shù)式的關系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導對數(shù)的運算性質。由于它還與后續(xù)很多內容,比如對數(shù)函數(shù)及其性質,這也是高考必考內容之一,所以在本學科有著很重要的地位。解決重點的關鍵是抓住對數(shù)的概念、并讓學生掌握對數(shù)式與指數(shù)式的互化;通過實例推導對數(shù)的運算性質,讓學生準確地運用對數(shù)運算性質進行運算,學會運用換底公式。培養(yǎng)學生數(shù)學運算、數(shù)學抽象、邏輯推理和數(shù)學建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關對數(shù)計算。
學生已經學習了指數(shù)運算性質,有了這些知識作儲備,教科書通過利用指數(shù)運算性質,推導對數(shù)的運算性質,再學習利用對數(shù)的運算性質化簡求值。課程目標1、通過具體實例引入,推導對數(shù)的運算性質;2、熟練掌握對數(shù)的運算性質,學會化簡,計算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的運算性質;2.邏輯推理:換底公式的推導;3.數(shù)學運算:對數(shù)運算性質的應用;4.數(shù)學建模:在熟悉的實際情景中,模仿學過的數(shù)學建模過程解決問題.重點:對數(shù)的運算性質,換底公式,對數(shù)恒等式及其應用;難點:正確使用對數(shù)的運算性質和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入回顧指數(shù)性質:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
對數(shù)與指數(shù)是相通的,本節(jié)在已經學習指數(shù)的基礎上通過實例總結歸納對數(shù)的概念,通過對數(shù)的性質和恒等式解決一些與對數(shù)有關的問題.課程目標1、理解對數(shù)的概念以及對數(shù)的基本性質;2、掌握對數(shù)式與指數(shù)式的相互轉化;數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)的概念;2.邏輯推理:推導對數(shù)性質;3.數(shù)學運算:用對數(shù)的基本性質與對數(shù)恒等式求值;4.數(shù)學建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質.重點:對數(shù)式與指數(shù)式的互化以及對數(shù)性質;難點:推導對數(shù)性質.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入已知中國的人口數(shù)y和年頭x滿足關系 中,若知年頭數(shù)則能算出相應的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達到18億,20億,30億......”,該如何解決?要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.
函數(shù)在高中數(shù)學中占有很重要的比重,因而作為函數(shù)的第一節(jié)內容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結合三要素判斷函數(shù)相等.課程目標1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學會求函數(shù)的定義域與函數(shù)值。數(shù)學學科素養(yǎng)1.數(shù)學抽象:通過教材中四個實例總結函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
《基本不等式》在人教A版高中數(shù)學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學的嚴謹性。數(shù)學學科素養(yǎng)1.數(shù)學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數(shù)學運算:利用基本不等式求最值;4.數(shù)據分析:利用基本不等式解決實際問題;5.數(shù)學建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.
例7 用描述法表示拋物線y=x2+1上的點構成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。
本節(jié)課選自《普通高中課程標準數(shù)學教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學思想方法;
學生在初中學習了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現(xiàn)象,本節(jié)課主要就旋轉度數(shù)和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.
本節(jié)主要內容是三角函數(shù)的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
教學重點:1.比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響2.分析區(qū)域不同發(fā)展階段地理環(huán)境的影響教學難點:1.區(qū)域的特征2.以兩個區(qū)域為例,比較分析地理環(huán)境差異對區(qū)域發(fā)展的影響教具準備:有關掛圖等、自制圖表等教學方法:比較法、案例分析法、圖示法等教學過程:一、區(qū)域1.概念:區(qū)域是地球表面的空間單位,它是人們在地理差異的基礎上,按一定的指標和方法劃分出來的。2.特征:(1)區(qū)域具有一定的區(qū)位特征:不同的區(qū)域,自然環(huán)境有差異,人類活動也有差異。同一區(qū)域,區(qū)域內部的特定性質相對一致,如濕潤區(qū)的多年平均降水量都在800毫米以上。但自然環(huán)境對人類活動的影響隨著其他條件的變化而不同。(2)具有一定的面積、形狀和邊界。①有的區(qū)域的邊界是明 確的,如行政區(qū);②有的區(qū)域的邊界具有過渡性質,如干濕地區(qū)。
A.城鎮(zhèn)數(shù)量猛增B.城市規(guī)模不斷擴大【設計意圖】通過讀圖的對比分析,提高學生提取信息以及對比分析問題的能力,通過小組之間的討論,培養(yǎng)合作能力。五、課堂小結和布置作業(yè)關于課堂小結,我打算讓學生自己來總結,你這節(jié)課學到了什么。這樣既可以提高學生的總結概括能力,也可以讓我在第一時間內獲得它們的學習反饋。(本節(jié)課主要學習了珠三角的位置和范圍以及改革開放以來珠三角地區(qū)工業(yè)化和城市化的發(fā)展。)關于作業(yè)的布置,我打算采用分層次布置作業(yè)法。第一個層次的作業(yè)是基礎作業(yè),要求每一位同學都掌握,第二個層次的作業(yè)是彈性作業(yè),學生可以根據自己的情況來選做。整個這堂課,老師只是作為一個引導者、組織者的角色,學生才是課堂上真正的主人,是自我意義的建構者和知識的生成者,被動的、復制式的課堂將離我們遠去。
(3)師生討論,提升思維深度。教師引領學生將討論由農業(yè)生態(tài)破壞、土地利用不合理等表象問題逐步深入到農業(yè)結構不合理、農業(yè)技術落后等深層問題,提升了學生思維的深度。(4)角色體驗,突破難點落實重點。在農民與保護區(qū)工作人員的角色體驗活動中,學生們嘗試換位思考,在沖突與交鋒中,在教師的引領下,重新認識環(huán)境保護與區(qū)域經濟發(fā)展的關系,在情感體驗中加深對可持續(xù)發(fā)展內涵的理解,小沖突凸顯大矛盾是本課設計的創(chuàng)新之處。2.注重對地理問題的探究,突出地理學科本質。地理學科具有綜合性、區(qū)域性特征,區(qū)域差異及人地和諧發(fā)展觀是我們在教學中應該把握的基本特征,也是我們應當把握的地理學科的本質特征,因此在本節(jié)課的設計中我注重抓住地理事物的空間特征、綜合性特征,以突出地理學科的本質。