提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

聘用司機勞動合同

  • 北師大初中數(shù)學(xué)九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級上冊用因式分解法求解一元二次方程2教案

    【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用說課稿

    人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用說課稿

    通過列表對比法、歸納法、、多媒體輔助法等教學(xué)方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學(xué)生更是學(xué)會運用圖表方法、高效記憶法、合作學(xué)習(xí)法等方法學(xué)習(xí)地理知識,增加學(xué)習(xí)能力。[幻燈片] “3S技術(shù)”的應(yīng)用:地理信息技術(shù)的應(yīng)用十分廣泛,從實際身旁的社會生產(chǎn)生活,到地理學(xué)的區(qū)域地理環(huán)境研究。學(xué)生的年齡和認(rèn)知范圍決定,此部分的案例教學(xué)的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術(shù)特點和具體應(yīng)用。而后者涉及地理學(xué)科的綜合性和區(qū)域性的特點,難度較大。針對學(xué)情特點,我多以前者案例入手學(xué)習(xí),以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災(zāi)影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災(zāi)區(qū)遙感圖像(4)教材 閱讀 遙感在農(nóng)業(yè)方面的應(yīng)用

  • 人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用教案

    人教版高中地理必修3地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用教案

    1.從監(jiān)測的范圍、速度,人力和財力的投入等方面看,遙感具有哪些特點?點撥:范圍更廣、速度更快、需要人力更少 、財力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當(dāng)于傳感器。課堂小結(jié):遙感技術(shù)是國土整治和區(qū)域發(fā)展研究中應(yīng)用較廣的技術(shù) 手段之一,我國在這個領(lǐng)域已經(jīng)走在了世界的前列。我國的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風(fēng)云”衛(wèi)星。遙感技術(shù)為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農(nóng)業(yè)估產(chǎn)、災(zāi)害監(jiān)測 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設(shè)計§1.2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用

  • 人教版高中地理必修3第一章第二節(jié)地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用教案

    人教版高中地理必修3第一章第二節(jié)地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用教案

    (4)假如你是110指揮中心的調(diào)度員,描述在接到報警電話到指揮警車前往出事地點的工作程序。點撥:接警→確認(rèn)出事地點的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達(dá))的巡警車→通知該巡警車。(5)由此例推想,地理信息技術(shù)還可以應(yīng)用于城市管理的哪些部門中?點撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護(hù)、物流等部門,都可利用地理信息技術(shù)?!菊n堂小結(jié)】現(xiàn)代地理學(xué)中,3S技術(shù)學(xué)科的發(fā)展與應(yīng)用,日益成為地理學(xué)前沿科學(xué)研究的重要領(lǐng)域,并成為地理學(xué)服務(wù)于社會生產(chǎn)的主要途徑,現(xiàn)在3S技術(shù)已經(jīng)廣泛應(yīng)用于社會的各個領(lǐng)域。它們?nèi)呒扔蟹止び钟新?lián)系。遙感技術(shù)主要用于地理信息數(shù)據(jù)的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對地理信息數(shù)據(jù)的管理、更新、分析等。

  • 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 北師大版初中七年級數(shù)學(xué)下冊用關(guān)系式表示的變量間關(guān)系說課稿2篇

    北師大版初中七年級數(shù)學(xué)下冊用關(guān)系式表示的變量間關(guān)系說課稿2篇

    一.說教材我今天說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)北師大版七年級下冊第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學(xué)習(xí)中學(xué)生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語言加以描述,初步具有了有條理的思考和表達(dá)的能力,為本節(jié)的深入學(xué)習(xí)奠定了基礎(chǔ)。二.說教學(xué)目標(biāo)本節(jié)課根據(jù)新的教學(xué)理念和學(xué)生需要掌握的知識,確立本節(jié)課的三種教學(xué)目標(biāo):知識與能力目標(biāo):根據(jù)具體情況,能用適當(dāng)?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關(guān)系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標(biāo):經(jīng)歷探索某些圖形中變量之間的關(guān)系的過程,進(jìn)一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標(biāo):通過研究,學(xué)習(xí)培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關(guān)系的表達(dá),培養(yǎng)數(shù)學(xué)建模能力,增強應(yīng)用意識。

  • 北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——“希望工程”義演教案1

    北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——“希望工程”義演教案1

    方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點三:工程問題一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任務(wù),剩下的工程由乙隊完成,問乙隊還需幾天才能完成?解析:首先設(shè)乙隊還需x天才能完成,由題意可得等量關(guān)系:甲隊干三天的工作量+乙隊干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時間=工作總量,當(dāng)題中沒有一些必須的量時,為了簡便,應(yīng)設(shè)其為1.三、板書設(shè)計“希望工程”義演題目特點:未知數(shù)一般有兩個,等量關(guān)系也有兩個解題思路:利用其中一個等量關(guān)系設(shè)未知數(shù),利用另一個等量關(guān)系列方程

  • 北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——水箱變高了教案2

    北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——水箱變高了教案2

    從而為列方程找等量關(guān)系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結(jié)果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學(xué)生自己設(shè)計表格為討論的得出起到輔助作用.2.相信學(xué)生并為學(xué)生提供充分展示自己的機會本節(jié)課的設(shè)計中,通過學(xué)生多次的動手操作活動,引導(dǎo)學(xué)生進(jìn)行探索,使學(xué)生確實是在舊知識的基礎(chǔ)上探求新內(nèi)容,探索的過程是沒有難度的任何學(xué)生都會動手操作,每個學(xué)生都有體會的過程,都有感悟的可能,這種形式讓學(xué)生切身去體驗問題的情景,從而進(jìn)一步幫助學(xué)生理解比較復(fù)雜的問題,再把實際問題抽象成數(shù)學(xué)問題.3.注意改進(jìn)的方面本節(jié)課由于構(gòu)題新穎有趣,所以一開始就抓住了學(xué)生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學(xué)生發(fā)表自己的想法較多,使得教學(xué)時間不能很好把握,導(dǎo)致課堂練習(xí)時間緊張,今后予以改進(jìn).

  • 北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——“希望工程”義演教案2

    北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——“希望工程”義演教案2

    1:甲、乙、丙三個村莊合修一條水渠,計劃需要176個勞動力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個村莊各派多少個勞動力?2:某校組織活動,共有100人參加,要把參加活動的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問這兩組人數(shù)各有多少人?目的:檢測學(xué)生本節(jié)課掌握知識點的情況,及時反饋學(xué)生學(xué)習(xí)中存在的問題.實際活動效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識地用“列表格”法來分析問題,因此,教師仍需引導(dǎo)他們能學(xué)會用“列表格”這個工具,有利于以后遇上復(fù)雜問題能很靈活地得到解決.六、歸納總結(jié):活動內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識:1. 兩個未知量,兩個等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會用表格分析數(shù)量間的關(guān)系.

  • 北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——水箱變高了教案1

    北師大初中七年級數(shù)學(xué)上冊應(yīng)用一元一次方程——水箱變高了教案1

    解:設(shè)截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關(guān)系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

  • 北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——增收節(jié)支1教案

    北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——增收節(jié)支1教案

    因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場共有兩種進(jìn)貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應(yīng).三、板書設(shè)計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進(jìn)一步認(rèn)識數(shù)學(xué)與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價值,逐步形成運用數(shù)學(xué)的意識;并且通過對問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟(jì)意識,增強他們的節(jié)約和有效合理利用資源的意識.

  • 北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——里程碑上的數(shù)1教案

    北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——里程碑上的數(shù)1教案

    A、B兩碼頭相距140km,一艘輪船在其間航行,順?biāo)叫杏昧?h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順?biāo)伲届o速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時間”列方程組.三、板書設(shè)計“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學(xué)思想方法是數(shù)學(xué)學(xué)習(xí)的靈魂.教學(xué)中注意關(guān)注蘊含其中的數(shù)學(xué)思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學(xué)生的學(xué)習(xí)興趣,開闊視野,同時也提高學(xué)生對數(shù)學(xué)思想的認(rèn)識,提升解題能力.

  • 北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——里程碑上的數(shù)2教案

    北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——里程碑上的數(shù)2教案

    提示:要學(xué)會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動畫,情景再現(xiàn).3.學(xué)法小結(jié):(1)對較復(fù)雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設(shè)計意圖:生動的情景引入,意在激發(fā)學(xué)生的學(xué)習(xí)興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學(xué)法小結(jié),著重強調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習(xí)慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學(xué)生的興趣,學(xué)生參與熱情很高;借助圖表分析,有效地克服了難點,學(xué)生基本都能借助圖表分析,在老師的引導(dǎo)下列出方程組。4.變式訓(xùn)練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗担挥种傥粩?shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。常嚽笤瓉淼模澄粩?shù).

  • 北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——增收節(jié)支2教案

    北師大初中數(shù)學(xué)八年級上冊應(yīng)用二元一次方程組——增收節(jié)支2教案

    答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補充和強調(diào)。)

  • 北師大初中數(shù)學(xué)八年級上冊用二元一次方程組確定一次函數(shù)表達(dá)式1教案

    北師大初中數(shù)學(xué)八年級上冊用二元一次方程組確定一次函數(shù)表達(dá)式1教案

    故直線l2對應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識,又不局限于基本知識.三、板書設(shè)計利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識圖能力以及語言表達(dá)能力.

  • 北師大初中數(shù)學(xué)九年級上冊利用一元二次方程解決面積問題2教案

    北師大初中數(shù)學(xué)九年級上冊利用一元二次方程解決面積問題2教案

    四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標(biāo)檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

  • 北師大初中八年級數(shù)學(xué)下冊利用四邊形邊的關(guān)系判定平行四邊形教案

    北師大初中八年級數(shù)學(xué)下冊利用四邊形邊的關(guān)系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進(jìn)行對比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 北師大初中數(shù)學(xué)九年級上冊用配方法求解簡單的一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊用配方法求解簡單的一元二次方程1教案

    探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

上一頁123...117118119120121122123124125126127128下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!