第一步驟是:游戲引入課一開始,我先出示2支鉛筆,用手捏住一端,這樣讓學(xué)生產(chǎn)生一個(gè)錯覺,再放開手,讓學(xué)生重新進(jìn)行判斷,從而得出比較2個(gè)物體的長短要一端對齊的方法。從游戲引入,能很好地激發(fā)學(xué)生的好奇心,同時(shí)又利用學(xué)生的已有經(jīng)驗(yàn),由學(xué)生輕松得出比較長短的方法,為下面的活動做好了知識鋪墊,既有趣,又有效。第二步驟是:比長短活動有了剛才比的方法的鋪墊,再讓學(xué)生找找自己想比長短的東西,然后進(jìn)行自由比較。在這里,主要要放手讓學(xué)生發(fā)揮自主性,但由于學(xué)生年齡太小,這里教師要加強(qiáng)引導(dǎo),所以在讓學(xué)生自己比之前,我讓學(xué)生先說說想到了可以比什么。在學(xué)生自己動手的時(shí)候,我也深入其中,加強(qiáng)指導(dǎo)。在反饋時(shí),還讓學(xué)生演示一下,一方面要讓學(xué)生體驗(yàn)到交流的成就感,另一方面也是培養(yǎng)其他學(xué)生認(rèn)真傾聽的習(xí)慣。
【教學(xué)設(shè)想】《課程標(biāo)準(zhǔn)》指出:“實(shí)踐活動是培養(yǎng)學(xué)生進(jìn)行活動探索與合作交流的重要途徑?!痹谶@一理念的支持下,我設(shè)計(jì)了以小組為單位進(jìn)行測量實(shí)踐活動。一、將學(xué)生個(gè)體間的學(xué)習(xí)關(guān)系改變?yōu)椤敖M內(nèi)合作”學(xué)習(xí)的關(guān)系。通過讓學(xué)生小組合作活動學(xué)習(xí),培養(yǎng)學(xué)生的合作意識、集體觀念,培強(qiáng)了學(xué)生對集體的責(zé)任感受和榮譽(yù)感。二、根據(jù)學(xué)生的實(shí)際情況,我合理選取活動素材,向?qū)W生提供了具體有趣、富有一定啟發(fā)性的活動。全課共有四部分:第一部分,課前律動;課堂開始配以兒童喜歡的音樂,讓學(xué)生在輕松愉悅中進(jìn)入課堂。第二部分,復(fù)習(xí)舊知、引入新課;通過對前面所學(xué)知識的復(fù)習(xí),加深對長度單位“厘米”和“米”的認(rèn)識。第三部分,活動體驗(yàn)、寓教于樂;這一部分共五個(gè)層次;第一層,選取了比較容易的活動,在木條上測量一米的長度,鞏固用尺子測量物體長度的方法;第二層,小組分工合作測量與同學(xué)們朝夕相處的課桌的長、寬、高這一實(shí)際問題,滲透了合作方法;
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
(三)拓展設(shè)計(jì):綜合運(yùn)用對話,深化語篇學(xué)生能表演書上的對話是教學(xué)的任務(wù),但我覺得對話教學(xué)的拓展訓(xùn)練更是對話教學(xué)的重要組成部分。它是對對話知識運(yùn)用的一種反映,是對話知識運(yùn)用的提煉和升華。本課的拓展環(huán)節(jié)我設(shè)計(jì)了兩個(gè)活動,一個(gè)是任選一個(gè)話題,編一段新對話,了解同桌的喜好及其原因,有fruit, food,drink, animal,我充分利用學(xué)生的舊知,讓所學(xué)的語言知識能滾動運(yùn)用起來,不僅鍛煉了學(xué)生的語言表達(dá)能力,同時(shí)也展現(xiàn)了他們不同的愛好。第二個(gè)活動是讓學(xué)生讀故事,圈一圈正確的單詞。不僅檢測了學(xué)生對于單復(fù)數(shù)的掌握情況,區(qū)分了food和fruit,而且通過幾組動物的對話,操練了重點(diǎn)句型,形成了一篇簡短的語篇,體現(xiàn)了對話的特點(diǎn),最后一句老虎說的話I have you for lunch today!學(xué)生在A部分已經(jīng)學(xué)過了I have…for lunch today.的句型,所以在這里出現(xiàn)這句話,學(xué)生都能夠理解,又增強(qiáng)了語言操練的趣味性。在編對話的時(shí)候我也有意識的豐富了對話的句型,如:They’re healthy for me.這其實(shí)在一開始的chant中已經(jīng)出現(xiàn)過。再如:Bananas are my favourite fruit.My favourite food is meat.等。
目的是讓學(xué)生更深入理解Just do it的意思,能在一定情景中運(yùn)用。接下來出示一些山羊媽媽的動物朋友引出課文內(nèi)容。讓學(xué)生先觀看課文的視頻,這樣更生動些,也許也能更引起學(xué)生的興趣些,因?yàn)檫@是一堂相對比較枯燥的讀寫課,有了視頻觀看可能更生動和有趣些。通過完成課文填空和課后回答問題,讓學(xué)生既練習(xí)到寫,又練習(xí)到對課文的理解,之后再讓學(xué)生演一演深入課文的朗讀。在最后一環(huán)節(jié)再讓學(xué)生完成一個(gè)new dialogue的填空運(yùn)用。這樣使整堂課更完整些,學(xué)生再一次運(yùn)用所學(xué)知識得到拓展。What Can You Do? PaRT B 第二課時(shí)說課稿一、教材分析1.教學(xué)內(nèi)容本課主要學(xué)習(xí)有關(guān)家務(wù)勞動的表述,主要句型有:Can you ……?Yes ,I can No, I can’t .本課時(shí)的大部分動詞詞組在四年級上下冊中都已出現(xiàn)過。如:Water the flowers ,sweep the floor ,set the table.2.教學(xué)目標(biāo)。(1)語言技能與知識目標(biāo)通過本課的學(xué)習(xí),能夠詢問別人能做什么家務(wù)。如:Can you set the table ?(2)運(yùn)用能力目標(biāo)會用Can you…?語句詢問并作出肯定或否定回答。
五、教學(xué)程序:下面我結(jié)合課件談?wù)劚竟?jié)課的教學(xué)程序: 1. 課前熱身:讓同學(xué)們邊說邊做動作。這段Chant聯(lián)系了兩個(gè)內(nèi)容,一是現(xiàn)在進(jìn)行時(shí),二是We’re having a party. We are happy. 這兩點(diǎn)都緊扣本課的兩個(gè)要點(diǎn)。2. Revision: Are you happy? Let’s do something happy and funny. Let’s play a game. What are you doing? I’m cooking, cooking. 全班分為四組,每組代表輪流提問:what are you doing ,下一組任何一位同學(xué)快速回答I’m cooking, cooking.并做相應(yīng)動作。這一游戲不只復(fù)習(xí)了大量的動詞和進(jìn)行時(shí),也讓同學(xué)逐漸在競賽中趨向興奮的狀態(tài)。3. Presentation: I’m happy today, Do you know why? Because it’s my birthday today.把同學(xué)的注意力引到我的身上。Look at me. What am I wearing today? I’m wearing a skirt. I am wearing a sweater.引出今天要掌握的單詞wear與句型I’m wearing…,然后提問What are you wearing? What is he /she wearing? 同學(xué)剛開始回答時(shí)可能會用I am in …..?但回答過幾輪之后他們就能夠正確運(yùn)用Wear這個(gè)詞了。
新授環(huán)節(jié),教師引導(dǎo)語,“今天我們要與文具交朋友,看看他們是什么呢?看誰認(rèn)識的朋友又快又準(zhǔn)又多?!闭f完之后利用自制實(shí)物有聲教具呈現(xiàn)文具的發(fā)音,方法是用識別筆點(diǎn)鋼筆上的識別碼,讓鋼筆自己說出:“Hello. I’m a pen. pen, pen, pen”學(xué)生對實(shí)物會說話非常好奇,極大地吸引孩子們的注意力,從而細(xì)心傾聽它叫什么,從而記住文具英語的讀音,大大調(diào)動學(xué)習(xí)的積極性及學(xué)習(xí)興趣。對于四個(gè)單詞的教學(xué)采用同樣的方法。突破難點(diǎn)上采用分音節(jié)的方法教,如eraser, rayon的發(fā)音,使學(xué)生聽到清晰的發(fā)音,然后再整體讀,幫助學(xué)生更好的記住單詞的讀音。我們在課堂上創(chuàng)設(shè)一個(gè)有聲有色的教學(xué)情景,再現(xiàn)一個(gè)現(xiàn)實(shí)生活的真實(shí)氛圍,制作很多會說話的教具,這樣就會吸引學(xué)生的注意力,激發(fā)他們對英語的興趣。有了智能語音教具系統(tǒng),這一切就很容易做到。
能力目標(biāo):培養(yǎng)學(xué)生聽,做,說,讀,寫的能力,增進(jìn)身體各部分的協(xié)調(diào)能力,語言表達(dá)能力。情感目標(biāo):讓學(xué)生通過運(yùn)用語言來完成學(xué)習(xí)任務(wù),感受成功,從而引發(fā)和培養(yǎng)學(xué)生學(xué)習(xí)英語的內(nèi)在動機(jī),最終使他們形成英語學(xué)習(xí)的積極態(tài)度。同時(shí)培養(yǎng)學(xué)生要愛護(hù)動物。2. 教學(xué)重難點(diǎn)本課的教學(xué)重點(diǎn)是讓學(xué)生能聽、說、認(rèn)讀六個(gè)有關(guān)動物的詞匯。教學(xué)難點(diǎn)是學(xué)生能將這六個(gè)有關(guān)動物的詞匯運(yùn)用到簡單的英語句子中表達(dá),突破重點(diǎn)和難點(diǎn)的關(guān)鍵是結(jié)合低年級學(xué)生喜歡游戲的特點(diǎn),通過玩游戲,使單調(diào)的知識溶進(jìn)生動的活動之中,讓學(xué)生在聽,做,動的過程中,掌握知識,并靈活地運(yùn)用。三.說教法1.教法設(shè)計(jì)為了順利完成以上教學(xué)目標(biāo),更好地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)識規(guī)律,我采用了講讀、直觀演示、愉快教學(xué)相結(jié)合的方法,層層遞進(jìn),激發(fā)學(xué)生的學(xué)習(xí)興趣,充分調(diào)動他們學(xué)習(xí)的積極性,保持他們強(qiáng)烈的好奇心和旺盛的求知欲,進(jìn)而促使他們由興趣發(fā)展到產(chǎn)生要學(xué)好它的志趣。