(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.
練習(xí)3、先化簡(jiǎn),再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過(guò)例題和聯(lián)系將所學(xué)知識(shí)升華,提升)練習(xí)4、動(dòng)動(dòng)腦。(讓學(xué)生進(jìn)一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒(méi)有解決的問(wèn)題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識(shí)技能1四、說(shuō)課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵(lì)學(xué)生用所學(xué)的知識(shí)解決身邊的問(wèn)題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識(shí),有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對(duì)新課標(biāo)和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會(huì)存在一定的偏差;另外,由于對(duì)學(xué)生的認(rèn)知規(guī)律認(rèn)識(shí)不夠,所以教學(xué)活動(dòng)的設(shè)計(jì)不一定十分有效。所有這些都有待教學(xué)實(shí)踐的檢驗(yàn)。
四、說(shuō)教法學(xué)法:本課主要采用知識(shí)遷移法、直觀教學(xué)法、引導(dǎo)發(fā)現(xiàn)法來(lái)教學(xué)。課上先復(fù)習(xí)整數(shù)乘分?jǐn)?shù),通過(guò)已掌握的整數(shù)乘分?jǐn)?shù)的意義就是表示一個(gè)數(shù)的幾分之幾是多少利用知識(shí)遷移規(guī)律自然引出1的是1×,1111的就是×,從而得出分?jǐn)?shù)乘分?jǐn)?shù)的意義同整數(shù)乘分?jǐn)?shù)一樣,都表示22221212一個(gè)數(shù)的幾分之幾是多少;結(jié)合多媒體直觀演示,進(jìn)一步幫助學(xué)生理解。在探討計(jì)算結(jié)果時(shí),讓學(xué)生動(dòng)手折一折,涂一涂,再借助圖形語(yǔ)言動(dòng)態(tài)直觀演示,幫助學(xué)生梳理思維,同時(shí)也加深了學(xué)生對(duì)知識(shí)的理解。在方法的總結(jié)上,通過(guò)學(xué)生對(duì)幾個(gè)算式的觀察,引導(dǎo)學(xué)生發(fā)現(xiàn)分?jǐn)?shù)乘分?jǐn)?shù)就用分子相乘的積作分子,分母相乘的積作分母。本節(jié)課學(xué)生則主要通過(guò)自主探究、合作交流、練習(xí)的方法理解并掌握分?jǐn)?shù)乘分?jǐn)?shù)的意義及計(jì)算方法。五、說(shuō)教學(xué)準(zhǔn)備:教師準(zhǔn)備多媒體課件、折紙。學(xué)生在操作手中有時(shí)會(huì)產(chǎn)生分歧或者折不出,課件的動(dòng)態(tài)演示,會(huì)有力促進(jìn)學(xué)生的模型建立。
我說(shuō)課的內(nèi)容是焦老師執(zhí)教的北師大版五年級(jí)下冊(cè)第三單元《分?jǐn)?shù)乘法(二)》一課,我將要從七個(gè)方面展開(kāi)說(shuō)課:說(shuō)教材、說(shuō)學(xué)情、說(shuō)教學(xué)目標(biāo)與教學(xué)重難點(diǎn)、說(shuō)教法與學(xué)法、說(shuō)教學(xué)過(guò)程、說(shuō)板書設(shè)計(jì)、說(shuō)教學(xué)效果。一、說(shuō)教材《分?jǐn)?shù)乘法(二)》是北師大版小學(xué)數(shù)學(xué)新課標(biāo)教材五年級(jí)下冊(cè)第三單元分?jǐn)?shù)乘法第二課第一課時(shí)的內(nèi)容,它是在學(xué)生理解了整數(shù)乘法的意義,分?jǐn)?shù)的意義,并學(xué)會(huì)“求幾個(gè)幾分之幾是多少?”的基礎(chǔ)上進(jìn)行教學(xué)的。是對(duì)《分?jǐn)?shù)乘法(一)》的拓展和延伸,為進(jìn)一步學(xué)習(xí)分?jǐn)?shù)乘分?jǐn)?shù),分?jǐn)?shù)除法和分?jǐn)?shù)四則混合運(yùn)算奠定基礎(chǔ)。起著承前啟后的作用。是學(xué)習(xí)分?jǐn)?shù)多步計(jì)算的關(guān)鍵,教材中創(chuàng)設(shè)兩個(gè)問(wèn)題情境,通過(guò)直觀圖形引導(dǎo)學(xué)生利用轉(zhuǎn)化的方法思考,將舊知與新知有機(jī)聯(lián)系在一起,應(yīng)用分?jǐn)?shù)乘法解決實(shí)際問(wèn)題。
[此環(huán)節(jié)的設(shè)計(jì)意圖是利用情景激發(fā)學(xué)生探究的欲望,讓學(xué)生帶著輕松、愉悅的心情投入到新知的學(xué)習(xí)中。](二)自主探究感悟新知教育心理學(xué)告訴我們,學(xué)生應(yīng)當(dāng)有足夠的時(shí)間和空間經(jīng)歷觀察、實(shí)驗(yàn)、猜測(cè)、計(jì)算、推理、驗(yàn)證等活動(dòng)過(guò)程。(在兒童的學(xué)習(xí)活動(dòng)中,興趣起著定向和動(dòng)力功能的雙重作用。)以這一理論為指導(dǎo),我設(shè)計(jì)了以下三個(gè)層次漸深的活動(dòng),大膽放手讓學(xué)生自主探究,從而突出重點(diǎn)、突破難點(diǎn)?;顒?dòng)一:理解分?jǐn)?shù)乘整數(shù)的意義。讓學(xué)生通過(guò)折一折的活動(dòng)自主計(jì)算,并歸納整理出學(xué)生的三計(jì)算方法:①根據(jù)分?jǐn)?shù)的意義數(shù)一數(shù)是3/5;②加法計(jì)算1/5+1/5+1/5=3/5;③乘法計(jì)算3*1/5=3/5,展示在黑板上,引導(dǎo)學(xué)生通過(guò)觀察對(duì)比發(fā)現(xiàn),其實(shí)3*1/5就是3個(gè)1/5相加,由此感知到分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,只是這里的相同加數(shù)變成了分?jǐn)?shù)。
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過(guò)自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過(guò)上一小節(jié)的實(shí)際問(wèn)題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過(guò)程中教師通過(guò)對(duì)問(wèn)題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過(guò)手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過(guò)精心設(shè)計(jì)的問(wèn)題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過(guò)渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過(guò)“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時(shí),一定要把整個(gè)負(fù)數(shù)和分?jǐn)?shù)用小括號(hào)括起來(lái))三.計(jì)算:①(-2) ,②-2 ,③(- ) ,④ (叫4個(gè)學(xué)生上臺(tái)板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評(píng)講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個(gè)相同因數(shù)積的運(yùn)算,可以運(yùn)用有理數(shù)乘方法則進(jìn)行符號(hào)的確定和冪的求值.乘方的含義:①表示一種運(yùn)算;②表示運(yùn)算的結(jié)果.
師生共同歸納法則2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。生5:這兩天的庫(kù)存量合計(jì)增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會(huì)不會(huì)出現(xiàn)和為零的情況?提示:可以聯(lián)系倉(cāng)庫(kù)進(jìn)出貨的具體情形。生6:如星期一倉(cāng)庫(kù)進(jìn)貨5噸,出貨5噸,則庫(kù)存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個(gè)數(shù)相加得零。師:你能用加法法則來(lái)解釋法則3嗎?生7:可用異號(hào)兩數(shù)相加的法則。一般地還有:一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。小結(jié):運(yùn)算關(guān)鍵:先分類運(yùn)算步驟:先確定符號(hào),再計(jì)算絕對(duì)值做一做:(口答)確定下列各題中和的符號(hào),并說(shuō)明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計(jì)算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請(qǐng)四位學(xué)生板演,讓學(xué)生批改并說(shuō)明理由。
接著引導(dǎo)學(xué)生進(jìn)一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過(guò)程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學(xué)生的思考經(jīng)歷由一般到特殊的過(guò)程。2.截面是其他形狀學(xué)生先猜想正方體的截面還有可能是什么形狀,再利用實(shí)驗(yàn)操作型課件對(duì)正方體進(jìn)行無(wú)限次的切截,讓學(xué)生在無(wú)限次切截的過(guò)程中體會(huì)截面產(chǎn)生和變化的整個(gè)過(guò)程,發(fā)現(xiàn)截面產(chǎn)生和變化的規(guī)律。學(xué)生從切截活動(dòng)中發(fā)現(xiàn)猜想時(shí)沒(méi)有想到的截面圖形,體會(huì)到探索的樂(lè)趣。教師再引導(dǎo)學(xué)生歸納正方體截面邊數(shù)的規(guī)律。學(xué)生的認(rèn)知得到升華。接著引導(dǎo)學(xué)生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學(xué)生先猜想圓柱體的截面可能是什么形狀,教師利用實(shí)驗(yàn)操作型課件對(duì)圓柱體進(jìn)行無(wú)限次的切截,學(xué)生觀察截面形狀。
目的:進(jìn)一步理解追擊問(wèn)題的實(shí)質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問(wèn)題得到解決。環(huán)節(jié)三、運(yùn)用鞏固活動(dòng)內(nèi)容:育紅學(xué)校七年級(jí)學(xué)生步行郊外旅行,1班的學(xué)生組成前隊(duì),步行速度為4千米/小時(shí),3班的學(xué)生組成后隊(duì),步行速度為6千米/小時(shí),1班出發(fā)一個(gè)小時(shí)后,3班才出發(fā)。請(qǐng)根據(jù)以上的事實(shí)提出問(wèn)題并嘗試回答。問(wèn)題1:3班追上1班用了多長(zhǎng)時(shí)間 ?問(wèn)題2:3班追上1班時(shí),他們離學(xué)校多遠(yuǎn)?問(wèn)題3:………………目的:給學(xué)生提供進(jìn)一步鞏固建立方程模型的基本過(guò)程和方法的熟悉機(jī)會(huì),讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會(huì)借線段圖分析行程問(wèn)題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問(wèn)題,同時(shí)還需注意檢驗(yàn)方程解的合理性.實(shí)際活動(dòng)效果:由于題目較簡(jiǎn)單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問(wèn)題的優(yōu)越性.
一是先用計(jì)算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,為下面的數(shù)學(xué)探險(xiǎn)作鋪墊。二是數(shù)學(xué)探險(xiǎn)。在這個(gè)步驟中,我先出示8個(gè)1乘8個(gè)1,學(xué)生用計(jì)算器計(jì)算的答案肯定不一樣,因?yàn)閷W(xué)生帶來(lái)的計(jì)算器所能顯示的數(shù)位不一樣,而且這些計(jì)算器所能顯示的數(shù)位都不夠用,也就是這道題目計(jì)算器不能解決。這時(shí)我提問(wèn):“你覺(jué)得問(wèn)題出在哪兒?是我們錯(cuò)了,還是計(jì)算器錯(cuò)了?你能想辦法解決嗎?請(qǐng)四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問(wèn)題的需要和欲望。在學(xué)生找不到更好的解決方法時(shí),引導(dǎo)學(xué)生向書本請(qǐng)教,完成課本第101頁(yè)想想做做的第四題。讓學(xué)生利用計(jì)算器算出前5題的得數(shù),引導(dǎo)學(xué)生通過(guò)觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個(gè)算式,發(fā)展學(xué)生的合情推理能力,同時(shí)也讓學(xué)生領(lǐng)略了數(shù)學(xué)的神奇。
②.通過(guò)“由文字語(yǔ)言到符號(hào)語(yǔ)言”再“由符號(hào)語(yǔ)言到文字語(yǔ)言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點(diǎn)策略:①.分三步分散難點(diǎn):引入時(shí)大量的實(shí)際情景,讓學(xué)生體會(huì)到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡(jiǎn)單代數(shù)式賦予實(shí)際意義,進(jìn)一步體會(huì)代數(shù)式的模型思想;通過(guò)“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實(shí)際問(wèn)題的能力.②.適時(shí)安排小組合作與交流,使學(xué)生在傾聽(tīng)、質(zhì)疑、說(shuō)服、推廣的過(guò)程中得到“同化”和“順應(yīng)”,直至豁然開(kāi)朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計(jì)為學(xué)生精彩的生成提供了很好的平臺(tái),在實(shí)際教學(xué)過(guò)程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點(diǎn),及時(shí)進(jìn)行引導(dǎo)和激勵(lì),并根據(jù)具體教學(xué)對(duì)象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過(guò)程真正成為生成教育智慧和增強(qiáng)實(shí)踐能力的過(guò)程.讓預(yù)設(shè)與生成齊飛.
(六)當(dāng)堂達(dá)標(biāo)(練習(xí)二、三 10分鐘)練習(xí)二讓學(xué)生口答,通過(guò)練習(xí),鞏固學(xué)生對(duì)直線、射線、線段表示方法的掌握。練習(xí)三讓學(xué)生去黑板板演,教師檢驗(yàn)對(duì)錯(cuò)并重點(diǎn)強(qiáng)調(diào)幾何語(yǔ)言的表述。文字語(yǔ)言和圖形語(yǔ)言之間的轉(zhuǎn)化是難點(diǎn),著重練習(xí)文字語(yǔ)言向圖形語(yǔ)言的轉(zhuǎn)化,提高幾何語(yǔ)言的理解與運(yùn)用能力。當(dāng)堂達(dá)標(biāo)是檢查學(xué)習(xí)效果、鞏固知識(shí)、提高能力的重要手段。通過(guò)練習(xí),學(xué)生會(huì)體驗(yàn)到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時(shí)獲得信息反饋,以便課下查漏補(bǔ)缺。 (七)小結(jié)(3分鐘)教師提問(wèn)“這節(jié)課我們學(xué)了哪些知識(shí)?”請(qǐng)學(xué)生回答,教師做適當(dāng)補(bǔ)充。課堂小結(jié)對(duì)一節(jié)課起著“畫龍點(diǎn)晴”的作用,它能體現(xiàn)一節(jié)課所講的知識(shí)和數(shù)學(xué)思想。因此,在小結(jié)時(shí),教師引導(dǎo)學(xué)生概括本節(jié)內(nèi)容的重點(diǎn)。
方法總結(jié):描述一個(gè)代數(shù)式的意義,可以從字母本身出發(fā)來(lái)描述字母之間的數(shù)量關(guān)系,也可以聯(lián)系生活實(shí)際或幾何背景賦予其中字母一定的實(shí)際意義加以描述.探究點(diǎn)四:根據(jù)實(shí)際問(wèn)題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學(xué)買2本練習(xí)冊(cè)花了n元,那么買m本練習(xí)冊(cè)要花多少元?(2)正方體的棱長(zhǎng)為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習(xí)冊(cè)花了n元,得出買1本練習(xí)冊(cè)花n2元,再根據(jù)買了m本練習(xí)冊(cè),即可列出算式.(2)根據(jù)正方體的棱長(zhǎng)為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習(xí)冊(cè)花了n元,∴買1本練習(xí)冊(cè)花n2元,∴買m本練習(xí)冊(cè)要花12mn元;(2)∵正方體的棱長(zhǎng)為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識(shí)點(diǎn)包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關(guān)鍵.
一、情境導(dǎo)入游泳是一項(xiàng)深受青少年喜愛(ài)的體育活動(dòng),學(xué)校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片《孩子,請(qǐng)不要私自下水》,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.你能根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會(huì)下河游泳”?二、合作探究探究點(diǎn)一:頻數(shù)直方圖的制作小紅家開(kāi)了一個(gè)報(bào)亭,為了使每天進(jìn)的某種報(bào)紙適量,小紅對(duì)這種報(bào)紙40天的銷售情況作了調(diào)查,這40天賣出這種報(bào)紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應(yīng)的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過(guò)觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來(lái),并用“<”號(hào)連接各數(shù).解析:利用數(shù)軸上的點(diǎn)來(lái)表示相應(yīng)的數(shù),再利用它們對(duì)應(yīng)點(diǎn)的位置來(lái)判斷各數(shù)的大?。猓喝鐖D:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個(gè)數(shù)的大小比較,可利用“數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進(jìn)行比較.探究點(diǎn)四:點(diǎn)在數(shù)軸上的移動(dòng)問(wèn)題點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長(zhǎng)度到點(diǎn)B時(shí),點(diǎn)B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對(duì)解析:∵點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),①當(dāng)點(diǎn)A沿?cái)?shù)軸向左移動(dòng)4個(gè)單位長(zhǎng)度時(shí),點(diǎn)B所表示的有理數(shù)為-6;②當(dāng)點(diǎn)A沿?cái)?shù)軸向右移動(dòng)4個(gè)單位長(zhǎng)度時(shí),點(diǎn)B所表示的有理數(shù)為2.故選C.方法總結(jié):點(diǎn)A在數(shù)軸上移動(dòng)要注意分兩種情況:一個(gè)向左,一個(gè)向右,不要漏掉其中的一種情況.