首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據對稱軸是x=-3,求出b=6,即可得出答案;(2)根據CD∥x軸,得出點C與點D關于x=-3對稱,根據點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數法求二次函數的解析式以及二次函數的圖象和性質,注意掌握數形結合思想與方程思想的應用.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數,同樣根據“同角的余角相等”,鉛垂線所指的度數就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據測量數據,就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據tan x= ,可以求出tan x的值,然后根據例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數的解析式,并根據自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數據:2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數解直角三角形.
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數,即可求得函數的解析式;(2)利用(1)得到的兩個解析式,結合二次函數與一次函數的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數,是解決問題的關鍵.
解析:點E是BC︵的中點,根據圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.
解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.
解析:(1)連接BI,根據I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.
如圖,課外數學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據銳角三角函數關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數y=ax2+bx+c的最值已知二次函數y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數求圖形面積的最大值【類型一】 利用二次函數求矩形面積的最大值
教材分析:《楓樹上的喜鵲》是一篇童話故事,這篇課文敘述的線條簡潔、明快,情節(jié)簡單、干凈,語調較為活潑,符合兒童的心理特點和閱讀接受能力。但是這篇童話又與眾不同的地方在于,一般的童話大都采用第三人稱敘述,講述者是置身事外的。而這篇童話采用的是第三人稱和第一人稱穿插敘述的方式,把一個帶著童真、童趣的眼睛去看待周圍事物的孩童展現在我們的面前。這個童話故事告訴我們:童話就在我們身邊,人人都可以創(chuàng)造童話?! W情分析:二年級的學生,已經對童話故事有濃厚的興趣,好奇心強,但缺乏一定的鑒別能力。大多數學生活潑、好動、大膽且獨立,他們已經掌握了識字的方法,喜歡讀書,但語言的表達能力、邏輯思維能力欠佳,有意注意的時間還比較短。
四、賞析詩歌這首詩,是古今一致公認的名篇。詩人登上幽州的薊北樓遠望,悲從中來,并以“山河依舊,人物不同”來抒發(fā)自己“生不逢辰”的哀嘆?!扒安灰姽湃恕币痪湮鍌€字,但卻包括了燕昭王在內的許多古代賢王,他們知人善任,人盡其才,大約怎么也不會任用像武攸宜這樣的無能之人;至于作者自己,如有像燕昭王這樣的統(tǒng)治者,才能一定會得到施展,抱負終會實現。但這一切不過是感慨而已,因為前代的賢王已成過去,是見不著的。 “后不見來者”,后代的賢君也將會有的,但人的生命是如此短暫,自己又怎么能見得著呢!前代的賢王見不著,后代的賢君等不到,空有治國安民的理想,終一生不得實現,這該是多么令人憂郁的事情?。?1、孤獨2、生之短促 人類擺脫不了的命運 3、懷才不遇 封建士子共同的命運天 地 人——孤獨詩歌表現了詩人怎么樣的情懷?
2.創(chuàng)作背景魯迅說過:“想看好花。一定要有好土。”又曾表示:“只要能培一朵花,就不妨做會朽的腐草。”為了培育蕭紅這朵中國三四十年代中國女性文學園圃的奇葩,魯迅甘作春泥,甘為人梯,在她的作品中傾注了大量心血;魯迅去世之后,蕭紅從悲痛中振作起來,陸續(xù)出版和發(fā)表了《馬伯樂》《回憶魯迅先生》《呼蘭河傳》等名篇佳作。這些作品又像春泥一樣,繼續(xù)滋養(yǎng)著中國文壇的茂林佳卉。魯迅和蕭紅之間的情誼已經成為文壇佳話,被千千萬萬的讀者傳誦……在林林總總的魯迅回憶錄中。蕭紅的《回憶魯迅先生》一枝獨秀。它不僅是魯迅回憶錄中的珍品。而且是中國現代懷人散文的典范,是敬獻于魯迅墓前的一個永不凋謝的花環(huán)。由于作者蕭紅跟回憶對象魯迅之間有著直接交往,對回憶對象充滿著緬懷崇敬之情,素材又來自于親歷、親聞,因此作品不僅富于史傳性,而且也富于文學性。
教學目標:知識與技能目標:了解作者,積累詞語,初步感知文章的內容。 過程與方法目標: 培養(yǎng)學生分析理清文章寫作順序的能力。 情感態(tài)度與價值觀教育:教育學生感受作品中體現的愛心。教學重點:了解作者,積累詞語,初步感知文章的內容教學難點:理清文章寫作的順序。教法學法:朗讀法,合作探究法。教學課時:2課時教學過程:
七、分析木蘭形象既有女兒情懷 更具英雄氣概古代杰出的巾幗英雄形象奇女子 普通人既是 巾幗英雄 又是 平民少女矯健的勇士 嬌美的女兒品質勤勞善良又堅毅勇敢 淳厚樸實又機敏活潑 熱愛親人又報效國家 不慕高官厚祿而熱愛和平生活八、探究寫法詩中哪些地方寫得詳細?哪些地言寫得簡略?這樣寫有什么好處?從軍緣由——詳寫出征前的準備——略寫出征中的思親心理——詳寫關山飛度,征戰(zhàn)沙場——略寫 詳寫女兒情態(tài)略寫英雄氣概凱旋辭官——詳寫家人迎接——詳寫木蘭改裝——詳寫1(在內容上)突出木蘭的兒女情態(tài),豐富了木蘭的英雄性格,使得人物形象真實感人。2(在結構上)詳略得當,使全詩顯得簡潔緊湊。繁簡安排有詳有略起到了突出人物特征 突出對木蘭的孝敬父母、勇于擔當重任的性格的頌揚
抒情句子1、對于廣大的關東原野,我心里懷著熾痛的熱愛。我無時無刻不聽見……因為我常常感到它在泛濫著一種熱情。 2、我總是被這種聲音所纏繞,……我都會突然想到是我應該回去的時候了。3、在故鄉(xiāng)的土地上,我印下我無數的腳印。在那田壟里埋葬過我的歡笑。 ……在那沉重的鎬頭上留著我的手印。2、怎樣理解文中的“我常常感到它在泛濫著一種熱情”中的“泛濫”與“在那田壟里埋葬過我的歡笑”中的“埋葬”這兩個詞語的確切含義?“泛濫”原意是“江河水溢出,淹沒土地”,又引申為“思想、事物到處擴散”。這里用 “泛濫”表達了作者的心情正如決堤之水不可遏抑地向四下泛濫奔流,作者那激憤狂放的心情用了“泛濫”來形容較之用“澎湃”“涌動”更多了幾分野性和難以駕馭的力量。`
3、文章怎樣寫“作為爭取民主的戰(zhàn)士”的聞一多先生的“說”與“做”的? 文章先寫他的“說”,寫他“說”的事實,由“小聲說”到“向全國人民呼喊”,寫他“說”的內容與目的反對獨裁,爭取民主。再敘他的“做”:起稿政治傳單,在群眾大會上大罵特務,走在游行示威隊伍的前頭,昂首挺胸,長須飄飄。用他的“說”和“做”揭示其爭取民主、反對獨裁的大無畏精神。 4、細讀全文,畫出精辟的語句,然后復述課文大意,并說出聞一多前期和后期思想品格上的主要特點,前后期有什么變化,又有什么共同的地方。聞先生前期為了探索其救國救民的出路而潛心學術,不畏艱辛,廢寢忘食,十數年如一日,終于在學術上取得累累碩果。后期則投身于民主運動,敢于為人民講話,面對兇殘的敵人無所畏懼,視死如歸,體現出民主戰(zhàn)士的大勇,成為中國革命知識分子的楷模。聞先生在前期和后期所走的道路不同,反映了他對社會認識的變化。但作為一名卓越的學者,一名偉大的愛國者,一名言行一致的志士仁人,他卻是始終如一的。