提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

完整的公司規(guī)章制度

  • 人教版高中地理必修3地理信息技術在區(qū)域地理環(huán)境研究中的應用教案

    人教版高中地理必修3地理信息技術在區(qū)域地理環(huán)境研究中的應用教案

    1.從監(jiān)測的范圍、速度,人力和財力的投入等方面看,遙感具有哪些特點?點撥:范圍更廣、速度更快、需要人力更少 、財力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當于傳感器。課堂小結:遙感技術是國土整治和區(qū)域發(fā)展研究中應用較廣的技術 手段之一,我國在這個領域已經(jīng)走在了世界的前列。我國的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風云”衛(wèi)星。遙感技術為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農業(yè)估產(chǎn)、災害監(jiān)測 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設計§1.2地理信息技術在區(qū)域地理環(huán)境研究中的應用

  • 人教版高中地理選修2三峽工程對生態(tài)環(huán)境和名勝古跡的影響及對策教案

    人教版高中地理選修2三峽工程對生態(tài)環(huán)境和名勝古跡的影響及對策教案

    一、三峽工程的生態(tài)環(huán)境效應三峽工程的生態(tài)環(huán)境效應是指建設三峽工程對生態(tài)與環(huán)境的有利和不利影響。1、有利影響(1)防洪:(2)防治血吸蟲?。海?)減輕洞庭湖淤積(4)增加枯水期流量,改善水(5)調節(jié)局部氣候:(6)減輕環(huán)境污染:綜上所述,三峽工程對生態(tài)環(huán)境的有利影響主要在中下游。2、不利影響及措施(1)淹沒土地、耕地:水庫蓄水將淹沒土地、耕地。(2)加劇水土流失和環(huán)境污染:在移民開發(fā)和城市遷建過程中,處理不當可能產(chǎn)生新的水土流失和環(huán)境污染等問題。(3)誘發(fā)地質災害(地震、滑坡):水庫蓄水改變了原有地應力的平衡,可能誘發(fā)地震,并使庫岸發(fā)生滑坡等地質災害的可能性增大。(4)加重泥沙淤積:水庫蓄水,使庫區(qū)水流速度變慢,庫區(qū)和庫尾的泥沙淤積加重。

  • 人教A版高中數(shù)學必修二有限樣本空間與隨機事件事件的關系和運算教學設計

    人教A版高中數(shù)學必修二有限樣本空間與隨機事件事件的關系和運算教學設計

    新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復進行;(2)試驗的所有可能結果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結果中的一個,但事先不確定出現(xiàn)哪個結果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結果?如何表示這些結果?根據(jù)球的號碼,共有10種可能結果。如果用m表示“搖出的球的號碼為m”這一結果,那么所有可能結果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。

  • 空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比橢圓幾何性質的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質,如何研究這些性質1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質,如何研究這些性質?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質.解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質求標準方程的思路1.利用橢圓的幾何性質求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們取一定點O作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 北師大版初中七年級數(shù)學下冊用關系式表示的變量間關系說課稿2篇

    北師大版初中七年級數(shù)學下冊用關系式表示的變量間關系說課稿2篇

    一.說教材我今天說課的內容是義務教育課程標準北師大版七年級下冊第四單元第二節(jié)的《用關系式表示的變量間關系》。在上節(jié)課的學習中學生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關系,并用自己的語言加以描述,初步具有了有條理的思考和表達的能力,為本節(jié)的深入學習奠定了基礎。二.說教學目標本節(jié)課根據(jù)新的教學理念和學生需要掌握的知識,確立本節(jié)課的三種教學目標:知識與能力目標:根據(jù)具體情況,能用適當?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標:經(jīng)歷探索某些圖形中變量之間的關系的過程,進一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標:通過研究,學習培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關系的表達,培養(yǎng)數(shù)學建模能力,增強應用意識。

  • 北師大初中數(shù)學八年級上冊建立平面直角坐標系確定點的坐標2教案

    北師大初中數(shù)學八年級上冊建立平面直角坐標系確定點的坐標2教案

    活動目的:(1)通過小組討論活動,讓學生理解坐標系的特點,并能應用特點解決問題。(2)培養(yǎng)學生逆向思維的習慣。(3)在小組討論中培養(yǎng)學生勇于探索,團結協(xié)作的精神。第四環(huán)節(jié):練習隨堂練習 (體現(xiàn)建立直角坐標系的多樣性)(補充)某地為了發(fā)展城市群,在現(xiàn)有的四個中小城市A,B,C,D附近新建機場E,試建立適當?shù)闹苯亲鴺讼?,并寫出各點的坐標。第五環(huán)節(jié):小結內容:小結本節(jié)課自己的收獲和進步,從知識和能力上兩個方面總結,老師予于肯定和鼓勵。目的:鼓勵學生大膽發(fā)言,敢于表達自己的觀點,同時學生之間可以相互學習,共同提高,老師給予肯定和鼓勵,激發(fā)學生的學習熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習題5.5。B類:完成A類同時,補充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標;(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)1教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)1教案

    A、B兩碼頭相距140km,一艘輪船在其間航行,順水航行用了7h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結:本題關鍵是找到各速度之間的關系,順速=靜速+水速,逆速=靜速-水速;再結合公式“路程=速度×時間”列方程組.三、板書設計“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學思想方法是數(shù)學學習的靈魂.教學中注意關注蘊含其中的數(shù)學思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學生的學習興趣,開闊視野,同時也提高學生對數(shù)學思想的認識,提升解題能力.

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)2教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)2教案

    提示:要學會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關系列方程。2.Flash動畫,情景再現(xiàn).3.學法小結:(1)對較復雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設計意圖:生動的情景引入,意在激發(fā)學生的學習興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學法小結,著重強調分析方法,養(yǎng)成歸納小結的良好習慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學生的興趣,學生參與熱情很高;借助圖表分析,有效地克服了難點,學生基本都能借助圖表分析,在老師的引導下列出方程組。4.變式訓練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗?;又知百位數(shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。?,試求原來的3位數(shù).

  • 北師大初中八年級數(shù)學下冊利用四邊形邊的關系判定平行四邊形教案

    北師大初中八年級數(shù)學下冊利用四邊形邊的關系判定平行四邊形教案

    解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質,解題的關鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現(xiàn)的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

  • 北師大初中八年級數(shù)學下冊一元一次不等式與一次函數(shù)的綜合應用教案

    北師大初中八年級數(shù)學下冊一元一次不等式與一次函數(shù)的綜合應用教案

    解析:(1)根據(jù)題設條件,求出等量關系,列一元一次方程即可求解;(2)根據(jù)題設中的不等關系列出相應的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設計一元一次不等式與一次函數(shù)關系的實際應用分類討論思想、數(shù)形結合思想本課時結合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調動了學生的思考能力,為后面的學習打下基礎.

  • 北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程1教案

    北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程1教案

    探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結:用配方法解一元二次方程時,應按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質1教案

    解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質1.二次函數(shù)y=ax2+bx+c的圖象與性質2.二次函數(shù)y=ax2+bx+c的應用

上一頁123...190191192193194195196197198199200201下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!