探究活動(dòng)8(教材第72頁):“結(jié)合生活事例,談?wù)勀阍诿鎸?duì)復(fù)雜事物時(shí)是如何分析和解決矛盾的?”這一探究活動(dòng)是在學(xué)生還不了解主次矛盾的原理時(shí),讓他們回憶自己在生活中有沒有遇到過面對(duì)許多矛盾時(shí)是如何解決的經(jīng)歷。比如,每天面對(duì)很多作業(yè),先做哪門課作業(yè)后做哪門作業(yè),你是如何考慮的?在學(xué)校面對(duì)學(xué)習(xí)、體育運(yùn)動(dòng)和社會(huì)工作,你是怎么安排的?在生活中,你遇到這樣的情況都是怎樣解決的?通過探究活動(dòng),使學(xué)生弄清主次矛盾的原理,學(xué)會(huì)用矛盾分析法分析問題。探究活動(dòng)9(教材第73頁):“你在生活中是如何分析具體問題的?”這一探究活動(dòng),強(qiáng)調(diào)的是“你”在生活中是如何運(yùn)用分析法分析具體問題的,要緊緊圍繞學(xué)生這一中心,首先強(qiáng)調(diào)具體問題具體分析的方法非常重要,這是馬克思主義的一個(gè)原則,是馬克思主義的活的靈魂。引導(dǎo)學(xué)生主動(dòng)運(yùn)用這種分析方法分析看待自己,分析看待社會(huì)??梢越M織學(xué)生進(jìn)行討論、交流,還可以讓學(xué)生撰寫小論文,寫出自己運(yùn)用這種分析方法分析了哪些具體問題,有哪些感受。
2.人工智能、信息及其對(duì)意識(shí)論的深化現(xiàn)代科學(xué)的發(fā)展,特別是以信息論、控制論、電子計(jì)算機(jī)科學(xué)和腦科學(xué)相結(jié)合為理論基礎(chǔ)的人工智能技術(shù)的發(fā)展,進(jìn)一步證明了辯證唯物主義關(guān)于物質(zhì)和意識(shí)的相互關(guān)系的原理,也給這種現(xiàn)代唯物主義提出了需要深入探索和解釋的許多哲學(xué)問題。在這些問題之中,人工智能和信息尤為重要。人工智能是相對(duì)于人的自然智能而言的。所謂自然智能,是指人所特有的自覺的意識(shí)能力,特別是抽象思維能力。由于這種能力是人的一種天賦,所以將其稱為人的自然智能。所謂人工智能,則指憑借電子計(jì)算機(jī)所實(shí)現(xiàn)的對(duì)人的某些智能的模擬,通過這種思維模擬,使人的某些智能得以再現(xiàn)和放大。自從電子計(jì)算機(jī)在20世紀(jì)中期問世以來,其作用越來越廣泛,模擬功能越來越強(qiáng),更新?lián)Q代越來越快,對(duì)生產(chǎn)和社會(huì)生活的影響也越來越大。自50年代中期開始,人工智能便以計(jì)算機(jī)作為主要的支持手段,逐漸發(fā)展成為一門新興的科學(xué)技術(shù)。
1、知識(shí)與技能 (1)認(rèn)識(shí)勻速圓周運(yùn)動(dòng)的概念,理解線速度的概念,知道它就是物體做勻速圓周運(yùn)動(dòng)的瞬時(shí)速度;理解角速度和周期的概念,會(huì)用它們的公式進(jìn)行計(jì)算; (2)理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T; (3)理解勻速圓周運(yùn)動(dòng)是變速運(yùn)動(dòng)?! ?、過程與方法 (1)運(yùn)用極限法理解線速度的瞬時(shí)性.掌握運(yùn)用圓周運(yùn)動(dòng)的特點(diǎn)如何去分析有關(guān)問題; (2)體會(huì)有了線速度后.為什么還要引入角速度.運(yùn)用數(shù)學(xué)知識(shí)推導(dǎo)角速度的單位。
知識(shí)目標(biāo)1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標(biāo)1.讀圖分析礦產(chǎn)資源與工業(yè)部門之間的聯(lián)系,培養(yǎng)學(xué)生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應(yīng)因地制宜。2.聯(lián)系實(shí)際,了解當(dāng)?shù)貍鹘y(tǒng)工業(yè)發(fā)展?fàn)顩r,為適應(yīng)當(dāng)今世界經(jīng)濟(jì)發(fā)展?fàn)顩r,應(yīng)有哪些改善措施,培養(yǎng)學(xué)生的創(chuàng)新能力。德育目標(biāo)1.通過了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點(diǎn)看待傳統(tǒng)工業(yè)區(qū)的改造,適應(yīng)世界發(fā)展潮流。2.中國已經(jīng)“入世”,我們應(yīng)用辯證唯物主義觀點(diǎn)分析我國傳統(tǒng)工業(yè)今后遇到的機(jī)遇和挑戰(zhàn)。
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
一、教材分析 《真正的哲學(xué)都是自己時(shí)代精神上的精華》是人教版高中政治必修四第3章第1框的教學(xué)內(nèi)容,主要學(xué)習(xí)哲學(xué)與時(shí)代的關(guān)系。二、教學(xué)目標(biāo)1.知識(shí)目標(biāo):識(shí)記哲學(xué)是時(shí)代的精神上的精華;理解哲學(xué)與時(shí)代的關(guān)系。2.能力目標(biāo):培養(yǎng)學(xué)生運(yùn)用哲學(xué)理論觀察、分析、處理社會(huì)問題的能力,增強(qiáng)學(xué)生的時(shí)代感。3.情感、態(tài)度和價(jià)值觀目標(biāo):培養(yǎng)學(xué)生與時(shí)俱進(jìn)的思想品質(zhì),讓學(xué)生關(guān)注時(shí)代、關(guān)注現(xiàn)實(shí)、關(guān)注生活,逐步樹立科學(xué)的世界觀、人生觀、價(jià)值觀 。三、教學(xué)重點(diǎn)難點(diǎn)哲學(xué)與時(shí)代的關(guān)系。四、學(xué)情分析本框題的內(nèi)容比較抽象,不易理解,所以講解時(shí)需要詳細(xì)。教師指導(dǎo)學(xué)生借助歷史知識(shí)進(jìn)行理解。五、教學(xué)方法1.教師啟發(fā)、引導(dǎo),學(xué)生自主閱讀、思考,討論、交流學(xué)習(xí)成果。2.學(xué)案導(dǎo)學(xué):見后面的學(xué)案。3.新授課教學(xué)基本環(huán)節(jié):預(yù)習(xí)檢查、總結(jié)疑惑→情境導(dǎo)入、展示目標(biāo)→合作探究、精講點(diǎn)撥→反思總結(jié)、當(dāng)堂檢測(cè)→發(fā)導(dǎo)學(xué)案、布置預(yù)習(xí)
5.循環(huán)經(jīng)濟(jì)當(dāng)前,發(fā)展循環(huán)經(jīng)濟(jì)和知識(shí)經(jīng)濟(jì)已成為國際社會(huì)的兩大趨勢(shì),有的發(fā)達(dá)國家甚至以立法的方式加以推進(jìn)。循環(huán)經(jīng)濟(jì)本質(zhì)上是一種生態(tài)經(jīng)濟(jì),它要求運(yùn)用生態(tài)學(xué)規(guī)律而不是機(jī)械的規(guī)律來指導(dǎo)人類社會(huì)的經(jīng)濟(jì)活動(dòng),減量化、再利用和資源化是其三大原則。傳統(tǒng)經(jīng)濟(jì)是一種“資源——產(chǎn)品——污染排放”單向流動(dòng)的線性經(jīng)濟(jì),特征是高開采、低利用、高排放;與之不同,循環(huán)經(jīng)濟(jì)倡導(dǎo)的是一種與環(huán)境和諧的經(jīng)濟(jì)發(fā)展模式,它要求把經(jīng)濟(jì)活動(dòng)組織成一個(gè)“資源——產(chǎn)品——再生資源”的反饋式流程,特征是低開采、高利用、低排放。目前,我國已經(jīng)把發(fā)展循環(huán)經(jīng)濟(jì)作為編制“十一五”規(guī)劃的重要指導(dǎo)原則。6.當(dāng)心被優(yōu)勢(shì)“絆倒”有三個(gè)旅行者同時(shí)住進(jìn)一家旅店,早上同時(shí)出門旅游。晚上歸來時(shí),拿傘的人淋得渾身是水,拿拐杖的人跌得滿身是傷,而什么也沒有帶的人卻安然無恙。
一、教材分析第四單元“發(fā)展社會(huì)主義市場經(jīng)濟(jì)”旨在培養(yǎng)社會(huì)主義的建設(shè)者,高中生是未來社會(huì)主義現(xiàn)代化建設(shè)的主力軍,是將來參與市場經(jīng)濟(jì)活動(dòng)的主要角色,承擔(dān)著全面建設(shè)小康社會(huì)的重任,本課的邏輯分為兩目:第一目,從“總體小康到全面小康”。這一部分的邏輯結(jié)構(gòu)如下:首先謳歌我國人民的生活水平達(dá)到總體小康這一偉大成就,然后從微觀和宏觀兩個(gè)方面介紹總體小康的成就。同時(shí)指出,我國現(xiàn)在達(dá)到的小康是低水平、不全面、發(fā)展不平衡的小康。第二目“經(jīng)濟(jì)建設(shè)的新要求”。這一目專門介紹全面建設(shè)小康社會(huì)的經(jīng)濟(jì)目標(biāo),也是學(xué)生要重點(diǎn)把握的內(nèi)容。二、教學(xué)目標(biāo)(一)知識(shí)目標(biāo)(1)識(shí)記總體小康的建設(shè)成就在宏觀和微觀上的表現(xiàn),全面建設(shè)小康社會(huì)的經(jīng)濟(jì)建設(shè)目標(biāo)。(2)理解低水平、不全面、發(fā)展很不平衡的小康,以及小康社會(huì)建設(shè)進(jìn)程是不平衡的發(fā)展過程。(3)運(yùn)用所學(xué)知識(shí),初步分析全面建設(shè)小康社會(huì)的意義。
水的性質(zhì)水是液體。石塊和木塊有一定的形狀,無論放在桌子上或者盒子里,它們都不會(huì)改變自己的形狀,都是固體。水就不同,放在圓杯子里就成為圓形,放在方盒子里就成了方形,它沒有一定的形狀。水是無色透明的。有人說水是白色的,這話錯(cuò)了。拿水同牛奶比較一下就會(huì)明白,牛奶才是白色的,水是什么顏色也沒有的。如果把一根筷子插入牛奶里,我們就看不見它。而把一根筷子插入清水中,我們能夠透過清水看見插入的筷子。水是無嗅、無味的。怎樣來區(qū)分無色透明的燒酒和水呢?光憑肉眼是毫無辦法的。只要聞一聞,嘗一嘗就能正確無誤地區(qū)分了。燒酒有酒的氣味和味道,而水卻什么氣味、什么味道也沒有。因此,在正常的情況下,水是無色、無嗅、無味的液體。