一、 說教材《百分數(shù)》是義務教育人教版小學數(shù)學第十二冊第二單元的內(nèi)容。它是在學生學習了運用百分數(shù)解決實際問題的基礎(chǔ)上來進行教學的。多數(shù)同學在日常生活中通過新聞媒體、購物等對折扣多少有所接觸、了解。因此根據(jù)學生現(xiàn)狀,需要教師規(guī)范、指導形成系統(tǒng)的概念,聯(lián)系生活實踐來展開教學。使學生理解折扣意義,懂得打折時原價、現(xiàn)價和折扣三者之間的數(shù)量關(guān)系。因此結(jié)合本課知識特點及課程標準的要求,我確定了本課的教學目標及教學重點、難點?!窘虒W目標】⒈ 識與技能:通過豐富多彩的學習情境,使學生理解打“折”的意義和計算方法,并能合理、靈活地選擇方法,正確地列式計算。⒉ 過程與方法:通過各種學習活動,讓學生經(jīng)歷用“折扣”知識解決生活中的實際問題的過程,提高學生運用數(shù)學知識解決實際問題的能力。同時培養(yǎng)學生善于觀察、樂于思考、敢于表達的良好學習習慣。⒊ 情感態(tài)度與價值觀:使學生體驗到到生活中處處有數(shù)學,激發(fā)學生學數(shù)學、用數(shù)學的興趣?!窘虒W重點】溝通“折扣”與百分數(shù)之間的聯(lián)系,會合理、靈活地運用 所學知識解決生活中的實際問題?!窘虒W難點】會合理、靈活地運用所學知識解決生活中的實際問題。
故宮——舊時叫紫禁城,是明、清兩代的皇宮,是我國現(xiàn)存的最大最完善的宮殿建筑群。 天壇——明、清兩代封建皇帝祭天祈求豐收的地方。主要建筑有祈年殿、回音壁等?! ☆U和園——明清皇家園林。主體是萬壽山和昆明湖。 人民大會堂——是全國人大代表開會的地方,能容納1萬多人,1957年建成的。
2. 學唱歌詞先聽琴跟唱歌詞,再分句解決難點:重難點:(1). 第一段中弱拍休止符的地方。(2). 附點四分音符:第一第二句的“總”, 第三句的“為”和第四句的“飄”;附點八分音符:第一第二句的“暖”,第三第四句的“總”。(3). 區(qū)分第二遍歌詞和第一遍歌詞在節(jié)奏上的不同之處。(4). 結(jié)束句三拍休止符。3. 完整的有表情地演唱歌曲。(三)、拓展通過欣賞邰麗華等聾啞人跳的舞蹈《千手觀音》,來教育學生學習殘疾人刻苦努力、奮發(fā)圖強的精神;通過欣賞愛心人士的捐助圖片,教育學生要幫助和幫助關(guān)心我們身邊的殘疾人!(四)、總結(jié)老師總結(jié):無數(shù)個小愛匯成一個大愛,讓我們在愛的人間里生活的更加美好,最后讓我們再次充滿感情地唱出這首愛的贊歌,在歌聲中結(jié)束本課!
最終使這節(jié)音樂課在這種快樂的氛圍中結(jié)束,就像本課的歌曲迷人的火塘一樣,那種迷人的情境永遠留在我們的心中。這是課的結(jié)束部分,通過表演已學的民族歌舞與器樂演奏來鞏固舊知,使主題突出,情感升華。(四)、小結(jié):這節(jié)課我們來到了美麗的貴州,學習了一首具有鮮明的侗族民歌音調(diào)特征的創(chuàng)作歌曲,并了解了一些侗族的風土人情。通過今天的學習與感受,希望同學們能主動多了解些我國各民族的人文知識。為實現(xiàn)我們中華民族的偉大復興而努力學習。五.教學反思本節(jié)課主要以一三四教學模式為教學方向,努力做到人人參與,小組合作,以學生為主,指導學生學習歌曲并從淺入深的讓學生掌握歌曲的旋律。本節(jié)課環(huán)節(jié)過多,在時間分配上要注意,著重點要分清主次,有的環(huán)節(jié)也應該取舍得當。同時這使我明白了實踐出真知的道理。我會繼續(xù)努力的!
1,猜一猜 師:這里有一個盒子,盒子里有一朵花,誰能猜出這朵花是什么顏色的?盒子里的花兒的顏色是確定的,為什么你們會有那么多不同的答案? ……師:好,老師給一個提示:紅色和黃色。會是什么顏色呢?師:要想準確猜出球的顏色,有一個統(tǒng)一的答案,怎么辦? 師:滿足你的愿望,第二個提示:不是紅色的。2、猜球游戲: 小朋友看,老師這里有一個白色和一個黃色的乒乓球,現(xiàn)在把它們放到盒子里,我們一起來玩一個猜一猜的游戲,好嗎? 師:我摸出其中一個,你猜猜是什么顏色的球呢?師:猜得準嗎?老師給你們一些提示吧:我摸出的不是黃球,那我摸出的是什么顏色的球?你是怎么猜的?師:那盒子里面的是什么顏色的球呢?你是怎么猜的?小朋友們很聰明,根據(jù)老師的提示能準確地判斷出球的顏色,這種方法就是我們今天要學習的簡單的推理。
一、說教材本文寫于“百日維新”失敗的1900年。文章從日本人和西歐人稱我國為“老大帝國”說起,以人喻國,怒斥當權(quán)的清王朝封建貴族官僚都是保守守舊、愚頑茍且的“老朽”,號召“中國少年”應肩負起救國的責任,為創(chuàng)造一個繁榮富強的“少年中國”而努力奮斗。表達了要求祖國繁榮富強的愿望和積極進取的精神。二、說學情三、說教學目標
學習目標1.掌握兩個一次函數(shù)圖像的應用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學生若出現(xiàn)解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設函數(shù)表達式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學思想方法:數(shù)形結(jié)合、方程的思想.目的:引導學生小結(jié)本課的知識及數(shù)學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據(jù)學生情況適當增減,但難度不應過大.
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計算當a=3,b=1時,水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當a=3,b=1時水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時需搞清下列幾個問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設計教學過程中,應通過活動使學生感知代數(shù)式運算在判斷和推理上的意義,增強學生學習數(shù)學的興趣,培養(yǎng)學生積極的情感和態(tài)度,為進一步學習奠定堅實的基礎(chǔ).
1、掌握有理數(shù)混合運算法則,并能進行有理數(shù)的混合運算的計算。2、經(jīng)歷“二十四”點游戲,培養(yǎng)學生的探究能力[教學重點]有理數(shù)混合運算法則。[教學難點]培養(yǎng)探索思 維方式?!窘虒W過程】情境導入——有理數(shù)的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數(shù)混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學到)叫做第三級運算。注意:可以應用運算律,適當改變運算順序,使運算簡便.合作探究——
1.能從統(tǒng)計圖中獲取信息,并求出相關(guān)數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數(shù)學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數(shù)學與生活的密切聯(lián)系.
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達到1.21a億元.由去年的年產(chǎn)值是2億元,可以預計明年的年產(chǎn)值是2.42億元.例3 當x=-3時,多項式mx3+nx-81的值是10,當x = 3時,求該代數(shù)式的值.解 當x=-3時,多項式mx3+nx-81=-27m-3n-81, 此時-27m-3n-81=10, 所以27m+3n=-91.則當x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學思想——“整體思想”.即是考慮問題時不是著眼于他的局部特征,而是把注意力和著眼點放在問題的整體結(jié)構(gòu)上,把一些彼此獨立,但實質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結(jié):負數(shù)和分數(shù)的乘方書寫時,一定要把整個負數(shù)和分數(shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學生總結(jié):負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結(jié)果.
1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數(shù)的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據(jù)學生情況和上課情況適當調(diào)整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學習了一次函數(shù)圖象的應用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.
方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當數(shù)量是2.5千克時的售價.
方法總結(jié):對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結(jié)論的嚴密性.