教學(xué)目標(biāo):知識(shí)與能力目標(biāo):1.能夠借助三角函數(shù)的定義及單位圓推導(dǎo)出三角函數(shù)的誘導(dǎo)公式 2.能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡(jiǎn)、求值問(wèn)題轉(zhuǎn)化為銳角的三角函數(shù)的化簡(jiǎn)、求值問(wèn)題情感目標(biāo):1.通過(guò)誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度 2.通過(guò)誘導(dǎo)公式探求工程中的合作學(xué)習(xí),培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神; 3. 通過(guò)誘導(dǎo)公式的運(yùn)用,培養(yǎng)學(xué)生的劃歸能力,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。 一導(dǎo)入:二、自學(xué)(閱讀教材第110---112頁(yè),回答下列問(wèn)題) 在直角坐標(biāo)系下,角的終邊與圓心在原點(diǎn)的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關(guān)于軸的對(duì)稱點(diǎn)的特征: 。對(duì)于角而言:角關(guān)于軸對(duì)稱的角為_(kāi)______公式二:__________ _________ _________
【教學(xué)目標(biāo)】知識(shí)目標(biāo):(1)掌握利用計(jì)算器求角度的方法;(2)了解已知三角函數(shù)值,求指定范圍內(nèi)的角的方法.能力目標(biāo):(1)會(huì)利用計(jì)算器求角;(2)已知三角函數(shù)值會(huì)求指定范圍內(nèi)的角;(3)培養(yǎng)使用計(jì)算工具的技能.【教學(xué)重點(diǎn)】已知三角函數(shù)值,利用計(jì)算器求角;利用誘導(dǎo)公式求出指定范圍內(nèi)的角.【教學(xué)難點(diǎn)】已知三角函數(shù)值,利用計(jì)算器求指定范圍內(nèi)的角.【教學(xué)設(shè)計(jì)】(1)精講已知正弦值求角作為學(xué)習(xí)突破口;(2)將余弦、正切的情況作類(lèi)比讓學(xué)生小組討論,獨(dú)立認(rèn)知學(xué)習(xí);(3)在練習(xí)——討論中深化、鞏固知識(shí),培養(yǎng)能力;(4)在反思交流中,總結(jié)知識(shí),品味學(xué)習(xí)方法.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】2課時(shí).(90分鐘)【教學(xué)過(guò)程】 教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 5.7已知三角函數(shù)值求角 *構(gòu)建問(wèn)題探尋解決 問(wèn)題 已知一個(gè)角,利用計(jì)算器可以求出它的三角函數(shù)值, 利用計(jì)算器,求= (精確到0.0001): 反過(guò)來(lái),已知一個(gè)角的三角函數(shù)值,如何求出相應(yīng)的角? 解決 準(zhǔn)備計(jì)算器.觀察計(jì)算器上的按鍵并閱讀相關(guān)的使用說(shuō)明書(shū).小組內(nèi)總結(jié)學(xué)習(xí)已知三角函數(shù)值,利用計(jì)算器求出相應(yīng)的角的方法. 利用計(jì)算器求出x:,則x= 歸納 計(jì)算器的標(biāo)準(zhǔn)設(shè)定中,已知正弦函數(shù)值,只能顯示出?90°~ 90°(或)之間的角. 介紹 質(zhì)疑 提問(wèn) 引導(dǎo) 說(shuō)明 了解 思考 動(dòng)手 操作 探究 利用 問(wèn)題 引起 學(xué)生 的好 奇心 并激 發(fā)其 獨(dú)立 尋求 計(jì)算 器操 作的 欲望 10
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問(wèn)題 我們知道,顯然 由此可知 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 10*動(dòng)腦思考 探索新知 在單位圓(如上圖)中,設(shè)向量、與x軸正半軸的夾角分別為和,則點(diǎn)A的坐標(biāo)為(),點(diǎn)B的坐標(biāo)為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導(dǎo)公式可以證明,(1)、(2)兩式對(duì)任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) ?。?.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關(guān)系. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題的方法 25
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類(lèi)問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類(lèi)似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例3 作出函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個(gè)關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對(duì)應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對(duì)應(yīng)五個(gè)關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個(gè)周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 15
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 10*動(dòng)腦思考 探索新知 在任意三角形中,是否也存在類(lèi)似的數(shù)量關(guān)系呢? c 圖1-7 當(dāng)三角形為鈍角三角形時(shí),不妨設(shè)角為鈍角,如圖所示,以為原點(diǎn),以射線的方向?yàn)檩S正方向,建立直角坐標(biāo)系,則 兩邊取與單位向量的數(shù)量積,得 由于設(shè)與角A,B,C相對(duì)應(yīng)的邊長(zhǎng)分別為a,b,c,故 即 所以 同理可得 即 當(dāng)三角形為銳角三角形時(shí),同樣可以得到這個(gè)結(jié)論.于是得到正弦定理: 在三角形中,各邊與它所對(duì)的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問(wèn)題: (1)已知三角形的兩個(gè)角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對(duì)角,求其他兩角和一邊. 詳細(xì)分析講解 總結(jié) 歸納 詳細(xì)分析講解 思考 理解 記憶 理解 記憶 帶領(lǐng) 學(xué)生 總結(jié) 20
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類(lèi)問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40
教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類(lèi)方式.第一類(lèi)方式有k1種方法,第二類(lèi)方式有k2種方法,……,第n類(lèi)方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問(wèn)題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問(wèn)題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本虾!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對(duì)象(如上面問(wèn)題中的民航站)叫做元素,上面的問(wèn)題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題方法 20
一、定義: ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開(kāi)式;上述二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),用表示;叫做二項(xiàng)展開(kāi)式的通項(xiàng)公式.二、二項(xiàng)展開(kāi)式的特點(diǎn)與功能1. 二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開(kāi)式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開(kāi)式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開(kāi)式的功能注意到二項(xiàng)展開(kāi)式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開(kāi)式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問(wèn)題的原始依據(jù).又注意到在的二項(xiàng)展開(kāi)式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見(jiàn)展開(kāi)式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問(wèn)題,二項(xiàng)式公式也是不可或缺的理論依據(jù).
重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
5、弊端:(1)經(jīng)濟(jì)發(fā)展不均衡,片面發(fā)展重工業(yè),使輕工業(yè)和農(nóng)業(yè)長(zhǎng)期處于落后狀態(tài);(2)對(duì)農(nóng)民的剝奪太重,挫傷了農(nóng)民的生產(chǎn)積極性;(3)長(zhǎng)期執(zhí)行指令性計(jì)劃嚴(yán)重削弱了企業(yè)的生產(chǎn)自主權(quán),不利于發(fā)揮企業(yè)的生產(chǎn)積極性,制約了蘇聯(lián)經(jīng)濟(jì)的可持續(xù)發(fā)展。(4)計(jì)劃經(jīng)濟(jì)體制確立后,沒(méi)有隨著社會(huì)的變化進(jìn)行調(diào)整,二戰(zhàn)后逐漸僵化,喪失了自我完善的功能,成為蘇聯(lián)解體的重要因素?!竞献魈骄俊克勾罅帜J降脑u(píng)價(jià)及經(jīng)驗(yàn)教訓(xùn):積極:①使蘇聯(lián)迅速實(shí)現(xiàn)了 工業(yè)化②蘇聯(lián)經(jīng)濟(jì)實(shí)力的迅速增長(zhǎng),為反法西斯戰(zhàn)爭(zhēng)的勝利奠定了 物質(zhì)基礎(chǔ) 。消極:①政治:高度集權(quán),破壞了 民主與法制 ; ②經(jīng)濟(jì):優(yōu)先發(fā)展重工業(yè)使 農(nóng)業(yè)和輕工業(yè)長(zhǎng)期處于落后狀態(tài),農(nóng)民生產(chǎn)積極性不高;計(jì)劃指令,壓制了地方和企業(yè)的積極性,阻礙蘇聯(lián)經(jīng)濟(jì)的發(fā)展高度集中的計(jì)劃經(jīng)濟(jì)體制,成為東歐劇變和蘇聯(lián)解體的重要原因。
本節(jié)通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問(wèn)題.2.能自建確定性函數(shù)模型解決實(shí)際問(wèn)題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;2.邏輯推理:通過(guò)數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問(wèn)題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問(wèn)題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題.重點(diǎn):利用函數(shù)模型解決實(shí)際問(wèn)題;難點(diǎn):數(shù)模型的構(gòu)造與對(duì)數(shù)據(jù)的處理.
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1本(A版)》的第五章的4.5.3函數(shù)模型的應(yīng)用。函數(shù)模型及其應(yīng)用是中學(xué)重要內(nèi)容之一,又是數(shù)學(xué)與生活實(shí)踐相互銜接的樞紐,特別在應(yīng)用意識(shí)日益加深的今天,函數(shù)模型的應(yīng)用實(shí)質(zhì)是揭示了客觀世界中量的相互依存有互有制約的關(guān)系,因而函數(shù)模型的應(yīng)用舉例有著不可替代的重要位置,又有重要的現(xiàn)實(shí)意義。本節(jié)課要求學(xué)生利用給定的函數(shù)模型或建立函數(shù)模型解決實(shí)際問(wèn)題,并對(duì)給定的函數(shù)模型進(jìn)行簡(jiǎn)單的分析評(píng)價(jià),發(fā)展學(xué)生數(shù)學(xué)建模、數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理的核心素養(yǎng)。1. 能建立函數(shù)模型解決實(shí)際問(wèn)題.2.了解擬合函數(shù)模型并解決實(shí)際問(wèn)題.3.通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),使學(xué)生認(rèn)識(shí)函數(shù)模型的作用,提高學(xué)生數(shù)學(xué)建模,數(shù)據(jù)分析的能力. a.數(shù)學(xué)抽象:由實(shí)際問(wèn)題建立函數(shù)模型;b.邏輯推理:選擇合適的函數(shù)模型;c.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)模型解決實(shí)際問(wèn)題;
1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).
在解決問(wèn)題的過(guò)程中,學(xué)生使用到了生活中常見(jiàn)的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺(jué)到利用身邊的工具完全可以達(dá)到解決問(wèn)題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實(shí)際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺(jué)成功之處在于:1、立足于問(wèn)題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會(huì)形成主動(dòng)尋求知識(shí)的內(nèi)在動(dòng)力。學(xué)生在這種學(xué)習(xí)情境中主動(dòng)學(xué)習(xí)到知識(shí),比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問(wèn)題意識(shí)。問(wèn)題解決后,教師應(yīng)讓學(xué)生從解決的問(wèn)題出發(fā),通過(guò)對(duì)題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問(wèn)題,這樣不僅讓學(xué)生掌握了更多的知識(shí),還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。
由于題目較簡(jiǎn)單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問(wèn)題的優(yōu)越性.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1.會(huì)借線段圖分析行程問(wèn)題.2.各種行程問(wèn)題中的規(guī)律及等量關(guān)系.同向追及問(wèn)題:①同時(shí)不同地——甲路程+路程差=乙路程; 甲時(shí)間=乙時(shí)間.②同地不同時(shí)——甲時(shí)間+時(shí)間差=乙時(shí)間; 甲路程=乙路程.相向的相遇問(wèn)題:甲路程+乙路程=總路程; 甲時(shí)間=乙時(shí)間.目的:強(qiáng)調(diào)本課的重點(diǎn)內(nèi)容是要學(xué)會(huì)借線段圖來(lái)分析行程問(wèn)題,并能掌握各種行程問(wèn)題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對(duì)所學(xué)知識(shí)和思想方法進(jìn)行歸納和總結(jié),從而形成自己對(duì)數(shù)學(xué)知識(shí)的理解和解決問(wèn)題的方法策略.
水的性質(zhì)水是液體。石塊和木塊有一定的形狀,無(wú)論放在桌子上或者盒子里,它們都不會(huì)改變自己的形狀,都是固體。水就不同,放在圓杯子里就成為圓形,放在方盒子里就成了方形,它沒(méi)有一定的形狀。水是無(wú)色透明的。有人說(shuō)水是白色的,這話錯(cuò)了。拿水同牛奶比較一下就會(huì)明白,牛奶才是白色的,水是什么顏色也沒(méi)有的。如果把一根筷子插入牛奶里,我們就看不見(jiàn)它。而把一根筷子插入清水中,我們能夠透過(guò)清水看見(jiàn)插入的筷子。水是無(wú)嗅、無(wú)味的。怎樣來(lái)區(qū)分無(wú)色透明的燒酒和水呢?光憑肉眼是毫無(wú)辦法的。只要聞一聞,嘗一嘗就能正確無(wú)誤地區(qū)分了。燒酒有酒的氣味和味道,而水卻什么氣味、什么味道也沒(méi)有。因此,在正常的情況下,水是無(wú)色、無(wú)嗅、無(wú)味的液體。
對(duì)于教材最后一段內(nèi)容,設(shè)計(jì)如下一個(gè)課堂研討題。讓學(xué)生課前查找有關(guān)資料,在主動(dòng)獲取知識(shí)的過(guò)程中,對(duì)比17、18世紀(jì)中國(guó)和歐洲的歷史,了解為什么會(huì)出現(xiàn)不同的發(fā)展趨勢(shì)?【課堂研討】17、18世紀(jì)中國(guó)和歐洲的封建國(guó)家都進(jìn)行了加強(qiáng)君主專制的改革措施。如東方有康熙大帝,西方有路易“太陽(yáng)王”,他們都使中、法兩國(guó)進(jìn)入到封建的鼎盛時(shí)代。但改革卻在中國(guó)和歐洲產(chǎn)生了不同影響。這是為什么?通過(guò)網(wǎng)絡(luò)或有關(guān)論著,查找有關(guān)資料讓學(xué)生發(fā)表自己的觀點(diǎn)和看法。啟示:17、18世紀(jì)的中國(guó)在政治上空前強(qiáng)化君主專制,在經(jīng)濟(jì)上重農(nóng)抑商,在外交上閉關(guān)鎖國(guó),影響了中國(guó)資本主義萌芽的正常發(fā)展;文化上文字獄,禁錮了文化。17、18世紀(jì)的歐洲在政治上加強(qiáng)君主專制來(lái)反對(duì)羅馬教廷的控制,卻實(shí)行君主開(kāi)明專制;在經(jīng)濟(jì)上實(shí)行重商主義;在外交上鼓勵(lì)對(duì)外擴(kuò)張,促進(jìn)了資本主義在歐洲的發(fā)展;文化上,啟蒙思想蓬勃發(fā)展。
②顧炎武也激烈反對(duì)君主專制, 主張限制君權(quán),提出亡國(guó)與亡天下的區(qū)別,認(rèn)為,保衛(wèi)一家一姓的國(guó)家,是君主及其大臣的事,而保衛(wèi)天下是所有人的事,這段話后來(lái)被后人提煉為“天下興亡,匹 夫有責(zé)”,鼓勵(lì)人民關(guān)心國(guó)家大事。③王夫之認(rèn)為天下的土地不能被君主一人所有,而應(yīng)當(dāng)是從事農(nóng)業(yè)的老百姓都有份。2.經(jīng)濟(jì)上,重視手工業(yè)、商業(yè)的發(fā)展,強(qiáng)調(diào)經(jīng)世致用。①黃宗羲駁斥輕視工商業(yè)的傳統(tǒng)思想,指出工商業(yè)和農(nóng)業(yè)一樣,都是“民生之本”,應(yīng)該受到保護(hù)。②顧炎武、王夫之主張文人多研究一些有關(guān)國(guó)計(jì)民生的現(xiàn)實(shí)問(wèn)題,反對(duì)空談。3.思想上,批判繼承傳統(tǒng)儒學(xué),構(gòu)筑具有時(shí)代特色的新思想體系。①黃宗羲批判舊儒學(xué)的“君為臣綱”的思想,繼承先秦儒家的民本思想,提出 “天下為主,君為客”的新思想命題。
師:三亞目前正在強(qiáng)調(diào)打造文化產(chǎn)業(yè),如舉辦文體大賽,提升三亞知名度.如今"美麗三亞,浪漫天涯"已成為三亞一張旅游名片,以文化產(chǎn)業(yè)的發(fā)展帶動(dòng)經(jīng)濟(jì)旅游的發(fā)展,大家結(jié)合今天的三亞文化產(chǎn)業(yè)發(fā)展談?wù)劙l(fā)展文化事業(yè)和文化產(chǎn)業(yè)的作用.學(xué)生:回答(略)。師:要支持文化產(chǎn)業(yè)發(fā)展,增強(qiáng)我國(guó)文化產(chǎn)業(yè)的整體實(shí)力和競(jìng)爭(zhēng)力.? 3. 億萬(wàn)人民的創(chuàng)建活動(dòng)(板書(shū)) (1).人民群眾是精神文明創(chuàng)建活動(dòng)的主體。學(xué)生朗讀課文P103頁(yè),理解億萬(wàn)人民是精神文明創(chuàng)建活動(dòng)的主體.師:發(fā)展先進(jìn)文化,本質(zhì)上是一個(gè)立足于建設(shè)中國(guó)特設(shè)社會(huì)主義偉大實(shí)踐而不斷進(jìn)行文化創(chuàng)造的過(guò)程,也就是社會(huì)主義精神文明的創(chuàng)建過(guò)程.(2).人民群眾參與精神文明創(chuàng)建活動(dòng)的意義.師:人民群眾在社會(huì)主義精神文明建設(shè)活動(dòng)中,創(chuàng)造了豐富多彩的形式,在參與的過(guò)程中思想感情得到熏陶,思想覺(jué)悟得到啟發(fā),精神生活得到充實(shí),道德意識(shí)得到增強(qiáng),道德境界得到升華.這對(duì)整個(gè)中華民族的精神面貌,正在產(chǎn)生不可估量的積極影響.