(3)若要滿(mǎn)足結(jié)論,則∠BFO=∠GFC,根據(jù)切線(xiàn)長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類(lèi)型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線(xiàn)電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線(xiàn)電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車(chē)車(chē)速為60千米/時(shí).(1)當(dāng)客車(chē)從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線(xiàn)電收音機(jī),客車(chē)行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車(chē)到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車(chē)從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.
我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱(chēng)圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱(chēng)中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫(huà)出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類(lèi)型一】 利用圓心角、弧、弦之間的關(guān)系證明線(xiàn)段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線(xiàn)的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線(xiàn)段相等.本題考查了等弧對(duì)等圓心角,以及角平分線(xiàn)的性質(zhì).
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類(lèi)型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線(xiàn)段的比,然后進(jìn)行比較是解題的關(guān)鍵.
1、 談話(huà)引入新課六一快到了。小朋友們?cè)诶蠋煹膸ьI(lǐng)下忙著布置自己的教室呢!可是他們遇到了一些數(shù)學(xué)上的問(wèn)題,你能幫他們一快解決嗎?2、教學(xué)例1。(1)、投影出示主題圖引導(dǎo)學(xué)生仔細(xì)觀(guān)察。說(shuō)說(shuō)他們遇到了什么問(wèn)題?(2)、引導(dǎo)學(xué)生解決問(wèn)題并列出算式。板書(shū):56÷8(3)、引導(dǎo)學(xué)生得出算式的商。問(wèn):你是怎么計(jì)算的?(想乘算除)(4)、學(xué)生獨(dú)立解決:要是掛7行呢?你能夠解決嗎?學(xué)生說(shuō)出自己的計(jì)算結(jié)果,并把求商的過(guò)程跟大家說(shuō)一說(shuō)。2、 小結(jié):在今天的學(xué)習(xí)中我們不僅幫小朋友們解決了數(shù)學(xué)問(wèn)題,而且還進(jìn)一步學(xué)會(huì)了利用乘法口訣來(lái)求商。在以后的除法中只要大家能夠熟記口訣,就能很快算出除法的商了。
一、創(chuàng)設(shè)情境,導(dǎo)入新課 1、老師有一個(gè)好消息要告訴大家,在動(dòng)物學(xué)校的旁邊開(kāi)了一家超市,森林里的小動(dòng)物們都去那兒購(gòu)物。今天,小熊哥倆正在商店里購(gòu)物呢!你想看看嗎? 2、教師出示情境圖,教師板書(shū)課題:小熊購(gòu)物二、自主探究新知 1、解決第(1)個(gè)問(wèn)題“小熊該付多少錢(qián)?” 1)“仔細(xì)觀(guān)察情境圖,你能發(fā)現(xiàn)哪些數(shù)學(xué)信息?”,教師總結(jié)重要數(shù)學(xué)信息?! ?2)“ 大家看小熊說(shuō)的話(huà),你能提出什么問(wèn)題?” 引出“小熊該付多少錢(qián)?”這個(gè)問(wèn)題?! ?3),教師巡視搜集學(xué)生出現(xiàn)的不同做法 4)展示學(xué)生作業(yè),并引導(dǎo)其他學(xué)生質(zhì)疑“第二個(gè)算式是什么意思?”若學(xué)生中不出現(xiàn)第二個(gè)算式,教師引導(dǎo)學(xué)生將兩個(gè)算式合在一起?! ?5)脫式計(jì)算:根據(jù)學(xué)生列出的算式,教師結(jié)合算式指導(dǎo)學(xué)生進(jìn)行脫式計(jì)算,規(guī)范學(xué)生的書(shū)寫(xiě)格式。
1、拿出一本數(shù)學(xué)教課書(shū),和一只筆,提問(wèn):哪個(gè)重有些?2、肯定學(xué)生的回答,并讓學(xué)生“掂一掂”,然后讓學(xué)生說(shuō)說(shuō)有什么樣的感覺(jué)。3、從剛才的實(shí)踐得出結(jié)論:物體有輕有重。板書(shū)課題。二、觀(guān)察、操作領(lǐng)悟新知1、出示主題掛圖,物體的輕重的計(jì)量。觀(guān)察主題掛圖。(1、)請(qǐng)同學(xué)們觀(guān)察一下,這幅圖畫(huà)的是什么?(2、)這幅圖中的小朋友和阿姨在說(shuō)什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R?jiàn)物品的質(zhì)量,我們現(xiàn)在來(lái)交流以下好嗎?表示物品有多重,可以用克和千克單位來(lái)表示。(4、)在學(xué)生說(shuō)的同時(shí),老師拿出有準(zhǔn)備的東西展示。
已知一水壩的橫斷面是梯形ABCD,下底BC長(zhǎng)14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長(zhǎng)為46m,求它的上底的長(zhǎng)(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過(guò)點(diǎn)A作AE⊥BC于E,過(guò)點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過(guò)點(diǎn)A作AE⊥BC,過(guò)點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長(zhǎng)約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問(wèn)題的關(guān)鍵是添加輔助線(xiàn)構(gòu)造直角三角形.
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類(lèi)型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為_(kāi)_______.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計(jì)算代數(shù)式.三、板書(shū)設(shè)計(jì)1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類(lèi)似,因此在教學(xué)中可以利用該優(yōu)勢(shì)展開(kāi)教學(xué),在探究過(guò)程中可以進(jìn)一步發(fā)揮學(xué)生的主動(dòng)性,盡可能地讓學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識(shí),進(jìn)而理解運(yùn)算法則
解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀(guān)察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書(shū)設(shè)計(jì)1.用曲線(xiàn)型圖象表示變量間關(guān)系2.從曲線(xiàn)型圖象中獲取變量信息圖象法能直觀(guān)形象地表示因變量隨自變量變化的變化趨勢(shì),可通過(guò)圖象來(lái)研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀(guān)察不夠準(zhǔn)確,畫(huà)面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來(lái),完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問(wèn)題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書(shū)設(shè)計(jì)1.用折線(xiàn)型圖象表示變量間關(guān)系2.根據(jù)折線(xiàn)型圖象獲取信息解決問(wèn)題經(jīng)歷一般規(guī)律的探索過(guò)程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問(wèn)題中得到關(guān)系式這一過(guò)程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
解1:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x°則 因?yàn)閚為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因?yàn)?,所以 解2:設(shè)該多邊形邊數(shù)為n,這個(gè)外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習(xí),鞏固提高1.七邊形的內(nèi)角和等于______度;一個(gè)n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個(gè)頂點(diǎn)可以畫(huà)7條對(duì)角線(xiàn),則這個(gè)n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個(gè)多邊形的各個(gè)內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計(jì)一個(gè)內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實(shí)現(xiàn)。(填“能”與“不能”)6. 如圖4,要測(cè)量A、B兩點(diǎn)間距離,在O點(diǎn)打樁,取OA的中點(diǎn) C,OB的中點(diǎn)D,測(cè)得CD=30米,則AB=______米.
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會(huì)易忘記先觀(guān)察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯(cuò)誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會(huì)將平方差和完全平方式混淆。這是對(duì)公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。培養(yǎng)學(xué)生的整體觀(guān)念,靈活運(yùn)用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識(shí)看起來(lái)很簡(jiǎn)單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;
教學(xué)效果:部分學(xué)生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識(shí)與解決生活中的實(shí)際問(wèn)題等基本技能.第六環(huán)節(jié) 課后練習(xí)四、教學(xué)反思數(shù)學(xué)來(lái)源于生活,并應(yīng)用于生活,讓學(xué)生用數(shù)學(xué)的眼光觀(guān)察生活,除了用所學(xué)的數(shù)學(xué)知識(shí)解決一些生活問(wèn)題外,還可以從數(shù)學(xué)的角度來(lái)解釋生活中的一些現(xiàn)象,面向生活是學(xué)生發(fā)展的“源頭活水”.在解決實(shí)際生活問(wèn)題的實(shí)例選擇上,我們盡量選擇學(xué)生熟悉的實(shí)例,如:學(xué)生身邊的事,購(gòu)物,農(nóng)業(yè),工業(yè)等方面,讓學(xué)生真切地理解數(shù)學(xué)來(lái)源于生活這一事實(shí)。有些學(xué)生對(duì)應(yīng)用題有一種心有余悸的感覺(jué),其關(guān)鍵是面對(duì)應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學(xué)中,如果采用列表的方法可幫助學(xué)生審題、找到等量關(guān)系,從而學(xué)會(huì)分析問(wèn)題??赡軐W(xué)生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學(xué)生從一些簡(jiǎn)單、類(lèi)似的問(wèn)題中模仿老師的分析方法,然后在練習(xí)中讓學(xué)生悟出解決問(wèn)題的竅門(mén),學(xué)會(huì)舉一反三,最后達(dá)到能獨(dú)立解決問(wèn)題的目的。
方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);④按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書(shū)設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)平移所得的圖形中,對(duì)應(yīng)點(diǎn)所連的線(xiàn)段平行(或在一條直線(xiàn)上)且相等,對(duì)應(yīng)線(xiàn)段平行(或在一條直線(xiàn)上)且相等,對(duì)應(yīng)角相等.3.簡(jiǎn)單的平移作圖教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問(wèn)題抽象成圖形問(wèn)題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.
解析:整個(gè)陰影部分比較復(fù)雜和分散,像此類(lèi)問(wèn)題通常使用割補(bǔ)法來(lái)計(jì)算.連接BD、AC,由正方形的對(duì)稱(chēng)性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使整個(gè)陰影部分割補(bǔ)成半個(gè)正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個(gè)面積可以計(jì)算的規(guī)則圖形.三、板書(shū)設(shè)計(jì)1.簡(jiǎn)單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀(guān)察、歸納和動(dòng)手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀(guān)察回答:如圖某體育館,為了方便不同需求的觀(guān)眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀(guān)點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫(xiě)出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
課程分析中專(zhuān)數(shù)學(xué)課程教學(xué)是專(zhuān)業(yè)建設(shè)與專(zhuān)業(yè)課程體系改革的一部分,應(yīng)與專(zhuān)業(yè)課教學(xué)融為一體,立足于為專(zhuān)業(yè)課服務(wù),解決實(shí)際生活中常見(jiàn)問(wèn)題,結(jié)合中專(zhuān)學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿(mǎn)足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專(zhuān)數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)中專(zhuān)數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個(gè)領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問(wèn)題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問(wèn)題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時(shí),形成一種意識(shí),即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國(guó)家規(guī)劃教材,依照13級(jí)教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對(duì)函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時(shí)深化學(xué)生對(duì)函數(shù)概念的理解和認(rèn)識(shí),也為接下來(lái)學(xué)習(xí)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)作了良好鋪墊。根據(jù)13級(jí)學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問(wèn)題入手,求得分段函數(shù)此部分知識(shí)以學(xué)生生活常識(shí)為背景,可以引導(dǎo)學(xué)生分析得出。
五、兩點(diǎn)說(shuō)明。(一)、板書(shū)設(shè)計(jì)這節(jié)課的板書(shū)我是這樣設(shè)計(jì)的,在黑板的正上方中間處寫(xiě)明課題,然后把板書(shū)分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語(yǔ)言轉(zhuǎn)化成符號(hào)語(yǔ)言的能力,板書(shū)中只出現(xiàn)兩種法則的符號(hào)表示,從而加深他們對(duì)法則的理解,板書(shū)右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問(wèn)題。板書(shū)下方是課堂小結(jié),重點(diǎn)寫(xiě)出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。有理數(shù)的除法板演練習(xí):有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時(shí)間分配:教學(xué)過(guò)程中的八個(gè)環(huán)節(jié)所需的時(shí)間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。