(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數).解析:(1)根據已知計算過程直接得出因式分解的方法即可;(2)根據已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結:解決此類問題需要認真閱讀,理解題意,根據已知得出分解因式的規(guī)律是解題關鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據分式的基本性質把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結:約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質:分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數.本節(jié)課的流程比較順暢,先探究分式的基本性質,然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
【類型三】 分式方程無解,求字母的值若關于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結:分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數,分式方程無解不但包括使最簡公分母為0的數,而且還包括分式方程化為整式方程后,使整式方程無解的數.三、板書設計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產生增根;(2)分式方程檢驗的方法.
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結:在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結:當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質進行線段相等關系的轉化.三、板書設計1.線段的垂直平分線的性質定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對線段垂直平分線性質定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.
方法總結:絕對值小于1的數也可以用科學記數法表示,一般形式為a×10-n,其中1≤a<10,n為正整數.與較大數的科學記數法不同的是其所使用的是負整數指數冪,指數由原數左邊起第一個不為零的數前面的0的個數所決定.【類型二】 將用科學記數法表示的數還原為原數用小數表示下列各數:(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數點向左移動相應的位數即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結:將科學記數法表示的數a×10-n還原成通常表示的數,就是把a的小數點向左移動n位所得到的數.三、板書設計用科學記數法表示絕對值小于1的數:一般地,一個小于1的正數可以表示為a×10n,其中1≤a<10,n是負整數.從本節(jié)課的教學過程來看,結合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調動,在拓展學生學習空間的同時,又有效地保證了課堂學習質量
把解集在數軸上表示出來,并將解集中的整數解寫出來.解析:分別計算出兩個不等式的解集,再根據大小小大中間找確定不等式組的解集,再找出解集范圍內的整數即可.解:x+23<1 ①,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數解為-1,0.方法總結:此題主要考查了一元一次不等式組的解法,解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據題目中對于解集的限制得到下一步所需要的條件,再根據得到的條件進而求得不等式組的整數解.三、板書設計一元一次不等式組概念解法不等式組的解集利用數軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結:此題將現(xiàn)實生活中的事件與數學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數列不等式―→解不等式―→結合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.
方法總結:已知解集求字母系數的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數的系數.本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數的系數這一步時有所不同.如果這個系數是正數,不等號的方向不變;如果這個系數是負數,不等號的方向改變.這也是這節(jié)課學生容易出錯的地方.教學時要大膽放手,不要怕學生出錯,通過學生犯的錯誤引起學生注意,理解產生錯誤的原因,以便在以后的學習中避免出錯.
安裝及運輸費用為600x+800(12-x),根據題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數,所以x=2,3,4.答:有三種方案:①購買甲種設備2臺,乙種設備10臺;②購買甲種設備3臺,乙種設備9臺;③購買甲種設備4臺,乙種設備8臺.方法總結:列不等式組解應用題時,一般只設一個未知數,找出兩個或兩個以上的不等關系,相應地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應求整數解.三、板書設計1.一元一次不等式組的解法2.一元一次不等式組的實際應用利用一元一次不等式組解應用題關鍵是找出所有可能表達題意的不等關系,再根據各個不等關系列成相應的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數學知識解決問題的過程,提高實際操作能力.
教學目標:1.知道二次函數與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數圖象求方程的根.教學重點:二次函數與一元二次方程的聯(lián)系.預設難點:用二次函數與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數y=ax2+bx+c當函數值y=0時的特殊情況.二次函數y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數學建模,將實際問題中的條件轉化為數學問題中的條件.常有兩個步驟:(1)根據題意得出二次函數的關系式,將實際問題轉化為純數學問題;(2)應用有關函數的性質作答.
2.鼓勵幼兒用(目測、計量、數數、折疊)等多種方法大膽去嘗試、探索二等份的多種分法。3.引導幼兒大膽講述操作過程和結果?;顒硬牧希唤叹撸禾炀€寶寶兩個、蛋糕一塊、二等份圖卡10張學具:長方形紙、剪刀、尺、毛線、包裝紙;吸管、圓片、三角形、正方形;硬幣、蠶豆、雪花片、紐扣、小碗;量杯6個、天平、蛋糕、番茄、豆腐干、刀子、菜板、橡皮泥等?;顒舆^程:1.幼兒將長方形紙進行二等份。 (1)班上請來了兩位小客人,看看是誰?它們還帶來了最喜歡吃的蛋糕,可是只有一塊蛋糕,兩人都想吃,怎么辦?(2)請一位幼兒動手試一試,有什么辦法知道這兩塊一樣大呢?(重疊)(3)教師小結:把蛋糕分成一樣大的兩份,這種方法叫二等份。想想蛋糕除了這樣分,還有不一樣的分法嗎?每位小朋友面前都有一張像蛋糕一樣的長方形紙,請你想出和別人不同的方法進行二等份?(4)幼兒動手操作,展示幼兒分法。(邊與邊對折、對角折)請幼兒比較一下,分出來的圖形和原來的圖形有什么變化?(5)教師小結:小朋友用了對折、對角折對長方形紙進行了二等份,把它分成了兩份一樣大的圖形。
2.愿意與同伴交流,分清自己的左邊和右邊?! ?3. 提高空間方位知覺和判斷力。 活動準備:手環(huán)人手一個?;顒舆^程: 1.猜謎激趣。 “一棵小樹五個杈,不長樹葉不開花。從早到晚不講話,寫字畫畫不離它?!?.區(qū)別自己身體的左右。 (1)區(qū)別左右手。 ①請小朋友舉起拿筆的那只手,招招手?! ?②交流做哪些事情需要用到右手? ③伸出左手搖一搖?! ?④出示手環(huán),請把手環(huán)戴在右手?! ?⑤小結:戴手環(huán)的這只是右手。搖搖手的是左手。
2、發(fā)展幼兒的邏輯分析判斷能力?;顒訙蕚洌?、教具:課件圖形特征表格,幾何圖形若干。(附后)2、學具:每人一張記錄表格。每人一個普通幾何圖形、一個背后貼有半個心形的幾何圖形、筆3、環(huán)境:布置尋寶地?;顒舆^程: 流程:交流圖形特征 學看圖示分析圖形特征 給特定圖形記錄特征 分析圖形特征尋找標志1、以小天使來到班上送禮物,尋找最幸運小朋友引題。(1)引:讓我們用最熱烈的掌聲來歡迎小客人吧!(展示課件小天使)
(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學生自己完成)三、課堂練習 活動3 教材習題小結:談談你這節(jié)課學習的收獲.
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結:(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關鍵是畫出圖形中頂點的對應點.畫圖的方法大致有兩種:一是每對對應點都在位似中心的同側;二是每對對應點都在位似中心的兩側.(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設計
二、教學要求:1、教幼兒能夠對大小區(qū)別較明顯的4-6個物體,按從小到大或從大到小的順序進行排序。2、復習5以內的數數。三、教學準備1、實物套娃1套2、大小不同顏色不同的圓形塑料片一組5張,每人一組。
一、 活動目標:1、 學習用記錄統(tǒng)計的方法比較物品的多少,感知數學在生活中的作用。2、 探索運用自己喜歡的方式進行記錄,從中比較出最快速最清楚的記錄方法。3、 嘗試商討合作式的學習,學會肯定自己和傾聽他人的意見。二、 活動準備1、 錄音機、磁帶;小貓、小狗、小兔木偶;金牌一枚;畫有小貓、小狗、小兔的記錄紙和空白表格若干,記號筆人手一支2、 大格子圖及皮球、沙包、繩子;
【活動準備】1、圖片十張,1—10的數字卡一套,筆一支。2、箱子一個,小布袋若干。(里面各種物品,數量1—10 不等)【活動過程】 一、教師組織教學,用說夢引起課題,引起幼兒的興趣。 二、1、教師展示十張圖片,集體點數每張圖片上的圖畫,并貼上相應的數字卡片。2、請幾名幼兒上來給圖畫圈,要求兩個兩個圈在一起,重點讓幼兒會兩個兩個圈在一起,邊圈邊讓幼兒數數。3、引導幼兒觀察已畫過的圖片,是不是每張圖片上的畫都被圈起來了?那幾張圖片是全圈完的?讓幼兒說一說是哪幾個數字?沒有圈完的是那幾張圖片?是哪幾個數字?4、請幾名幼兒回答后,那幾個是全圈完的,那幾個是沒圈完的,全圈完的2、4、6、8、10、是雙數,沒圈完的1、3、5、7、9、是單數。 教師小結:兩個兩個全部數完的是雙數,2、4、6、8、10是雙數;1、3、5、7、9是單數。請幼兒說一說1—10數字中的雙數有哪些,單數有哪些?