二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當(dāng)?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
A、B兩碼頭相距140km,一艘輪船在其間航行,順水航行用了7h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順速=靜速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時間”列方程組.三、板書設(shè)計“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學(xué)思想方法是數(shù)學(xué)學(xué)習(xí)的靈魂.教學(xué)中注意關(guān)注蘊含其中的數(shù)學(xué)思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學(xué)生的學(xué)習(xí)興趣,開闊視野,同時也提高學(xué)生對數(shù)學(xué)思想的認識,提升解題能力.
提示:要學(xué)會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動畫,情景再現(xiàn).3.學(xué)法小結(jié):(1)對較復(fù)雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設(shè)計意圖:生動的情景引入,意在激發(fā)學(xué)生的學(xué)習(xí)興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學(xué)法小結(jié),著重強調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習(xí)慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學(xué)生的興趣,學(xué)生參與熱情很高;借助圖表分析,有效地克服了難點,學(xué)生基本都能借助圖表分析,在老師的引導(dǎo)下列出方程組。4.變式訓(xùn)練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗担挥种傥粩?shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。?,試求原來的3位數(shù).
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
知識與技能目標:1. 能正確說出三元一次方程(組)及其解的概念,能正確判別一組數(shù)是否是三元一次方程(組)的解;2. 會根據(jù)實際問題列出簡單的三元一次方程或三元一次方程組。過程與方法目標:1. 通過加深對概念的理解,提高對“元”和“次”的認識。2. 能夠逐步培養(yǎng)類比分析和歸納概括的能力,了解辯證統(tǒng)一的思想。情感態(tài)度與價值觀目標:通過對實際問題的分析,使學(xué)生進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)學(xué)生良好的數(shù)學(xué)應(yīng)用意識。
2.比較物體的高度和影長時,要在同一( )、同一( )進行。3.在同一時間、同一地點,物體的高度和影長成( )比例。4.同樣高度的物體在不同時間、不同地點測出的影長是會( )的。 5、李明在操場上插上幾根長短不同的的竹竿,在同一時間里測量這幾根竹竿的長和相應(yīng)的影長情況如下表: 竹竿長/米11.21.8245影長/米0.50.60.9122.5比值 (1)算出竹竿和影長的比值,并填在表格中。 (2)通過測量和計算,你發(fā)現(xiàn)了什么? (3)這時李明測出旗桿的影長是5米,你能求出旗桿的實際高度是多少米? (4)這時王剛測出一棵松樹的影長是2.4米,你能算出這棵松樹的實際高度嗎? 6、為了測量出學(xué)校旗桿的高度,同學(xué)們找來了一根長8分米的木棍立在旗桿旁,發(fā)現(xiàn)木棍的影長是6分米,同時又發(fā)現(xiàn)旗桿的影長是7.5米,你能求出旗桿的高度嗎? 7.在同一時刻,小璐測得她的影長為1米,距她不遠處的一棵槐樹的影長為5米。已知小璐的身高為1.3米,這棵槐樹的有多高。
提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導(dǎo)入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。
(一)觀圖激趣、設(shè)疑導(dǎo)入 出示課件的第二張幻燈片。師:請說出與老師相反的詞語或句子。向上看。向東走50米。小維在知識競賽中贏了20分。小明在銀行存入300元錢。零上10℃。生:……。師:這就是我們今天要學(xué)習(xí)的負數(shù)。板書:負數(shù)(二)探究新知1、出示課件的第三張幻燈片。師:請大家仔細觀察上圖,你發(fā)現(xiàn)什么問題?學(xué)生以小組為單位交流。學(xué)生以小組為單位匯報交流結(jié)果。生:0℃表示什么意思呢?生:3℃和-3℃表示的意思一樣嗎?師:小組內(nèi)交流解決上述問題。學(xué)生以小組為單位探究交流。學(xué)生以小組為單位匯報探究交流結(jié)果。老師對學(xué)生匯報給予適當(dāng)?shù)脑u價。老師課件出示答案。師:0℃表示淡水結(jié)冰的溫度,比0℃低的溫度叫零下溫度,通常在數(shù)字前加“-”(負號),如-3 ℃表示零下3攝氏度,讀作負三攝氏度;比0℃高的溫度叫零上溫度,在數(shù)字前加“+”(正號),一般情況下可省略不寫:如+3℃表示零上三攝氏度,讀作正三攝氏度,也可以寫成3℃,讀作三攝氏度。
(四)、課堂總結(jié)、體驗成功引導(dǎo)學(xué)生對所學(xué)知識、學(xué)習(xí)方法、學(xué)習(xí)結(jié)果、情感等進行全面總結(jié),讓學(xué)生體驗學(xué)習(xí)的成功感,同時,進一步系統(tǒng)、完善知識結(jié)構(gòu)??傊?,本課的教學(xué)設(shè)計力求體現(xiàn)“以學(xué)生為本”的教學(xué)理念,具體體現(xiàn)在以下幾個方面:(一)、創(chuàng)設(shè)生動的情景,激發(fā)探索的樂趣,讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系。課的引入以一幅學(xué)生經(jīng)常接觸的,喜聞樂見的購買玩具這一題材為切入點。在練習(xí)設(shè)計中,改變枯燥抽象的數(shù)字計算練習(xí),選取了一組寓有童趣的素材。它們以豐富多彩的呈現(xiàn)方式深深地吸引著學(xué)生,使他們認識到現(xiàn)實生活中蘊含著大量的數(shù)學(xué)信息,使學(xué)生感到有趣、有挑戰(zhàn)性,激發(fā)他們好奇,好勝的心理,從而誘發(fā)他們?nèi)ブ鲃訉で蠼鉀Q問題的策略,同時體驗到數(shù)學(xué)與生活的聯(lián)系。
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 用樣本估計總體時,樣本抽取得是否恰當(dāng),直接關(guān)系到總體特性估計的準確程度.那么,應(yīng)該如何抽取樣本呢? 介紹 質(zhì)疑 了解 思考 啟發(fā) 學(xué)生思考 0 5*動腦思考 探索新知 【新知識】 下面介紹幾種常用的抽樣方法. 1.簡單隨機抽樣 從一批蘋果中選取10個,每個蘋果被選中的可能性一般是不相等的,放在上面的蘋果更容易被選中.實際過程又不允許將整箱蘋果倒出來,攪拌均勻.因此,10個蘋果做樣本的代表意義就會打折扣. 我們采用抽簽的方法,將蘋果按照某種順序(比如箱、層、行、列順序)編號,寫在小紙片上.將小紙片揉成小團,放到一個不透明的袋子中,充分攪拌后,再從中逐個抽出10個小紙團.最后根據(jù)編號找到蘋果. 這種抽樣叫做簡單隨機抽樣. 簡單隨機抽樣必須保證總體的每個個體被抽到的機會是相同的.也就是說,簡單隨機抽樣是等概率抽樣. 抽簽法(俗稱抓鬮法)是最常用的簡單隨機抽樣方法.其主要步驟為 (1)編號做簽:將總體中的N個個體編上號,并把號碼寫到簽上; (2)抽簽得樣本:將做好的簽放到容器中,攪拌均勻后,從中逐個抽出n個簽,得到一個容量為n的樣本. 當(dāng)總體中所含的個體較少時,通常采用簡單隨機抽樣.例如,從某班抽取10位同學(xué)去參加義務(wù)勞動,就可采用抽簽的方法來抽取樣本. 當(dāng)總體中的個體較多時,“攪拌均勻”不容易做到,這樣抽出的樣本的代表性就會打折扣.此時可以采用“隨機數(shù)法”抽樣. 產(chǎn)生隨機數(shù)的方法很多,利用計算器(或計算機)可以方便地產(chǎn)生隨機數(shù). CASIO fx 82ESPLUS函數(shù)型計算器(如圖10-3),利用 · 鍵的第二功能產(chǎn)生隨機數(shù).操作方法是:首先設(shè)置精確度并將計算器顯示設(shè)置為小數(shù)狀態(tài),依次按鍵SHIFT 、 MODE、 2 ,然后連續(xù)按鍵 SHIFT 、 RAN# ,以后每按鍵一次 = 鍵,就能隨機得到0~1之間的一個純小數(shù). 采用“隨機數(shù)法”抽樣的步驟為: (1)編號:將總體中的N個個體編上號; (2)選號:指定隨機號的范圍,利用計算器產(chǎn)生n個有效的隨機號(范圍之外或重復(fù)的號無效),得到一個容量為n的樣本. 講解 說明 引領(lǐng) 分析 仔細 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 20
(一)創(chuàng)設(shè)情境,提出問題:學(xué)生的學(xué)習(xí)動機和求知欲不會自然涌現(xiàn),它取決于教師所創(chuàng)設(shè)的學(xué)習(xí)情境,而興趣是最好的老師,因此,在課的一開始,我設(shè)計了“今天我們再去街心公園看一看”這一情境:出示情境圖:你看到了什么信息,你能提出什么數(shù)學(xué)問題?(板書)學(xué)生提出很多問題。設(shè)計意圖:數(shù)學(xué)來源于生活,有趣的生活情境,激發(fā)學(xué)生好奇心和強烈的求知欲,讓學(xué)生在生動具體的情境中學(xué)習(xí)數(shù)學(xué),從而使教材與學(xué)生之間建立相互包容、相互激發(fā)的關(guān)系。讓學(xué)生既認識了自身,又大膽而自然地提出猜想。(二)、探索新知解決問題“教師為主導(dǎo),學(xué)生為主體,探究為主線”的三為主原則“保護環(huán)境”花壇一共用了多少盆花?怎樣列式?
一、說教材《兩位數(shù)加一位數(shù)的進位加法》是人教版義務(wù)教育課程標準實驗教科書一年級下冊P62“兩位數(shù)加一位數(shù)的進位加法”,本課是在兩位數(shù)加一位數(shù)和整十?dāng)?shù)的基礎(chǔ)上進行教學(xué)的。在本節(jié)課中,通過生活情境圖,引入兩位數(shù)加一位數(shù)的進位加法,并使學(xué)生在解決實際問題的過程中,進一步體會加法的意義,鼓勵學(xué)生提出問題并解決問題,要讓學(xué)生在獨立思考的基礎(chǔ)上,經(jīng)歷與他人交流的過程,探索并掌握兩位數(shù)加一位數(shù)進位加法的計算方法,并能正確地計算,加強動手操作,探索計算方法,體會算法的多樣性。根據(jù)本節(jié)課在教材中的地位和作用,依據(jù)小學(xué)數(shù)學(xué)課程標準和孩子們已有的認知水平,我把本節(jié)課的教學(xué)目標定為:1、知識與技能在解決實際問題的過程中,進一步體會加法的意義,探索并掌握兩位數(shù)加一位數(shù)進位加法的計算方法。
(二)創(chuàng)設(shè)情境,探索新知。1、創(chuàng)設(shè)情境,激發(fā)興趣。小白兔和小熊要坐公交車去公園,他們來到公交公司,先后看到公交公司有一邊說一邊課件出示課件,請同學(xué)們仔細觀察,把你從圖上看到的物品和讀出的數(shù)據(jù)告訴老師和其他同學(xué)。你能根據(jù)這些信息提出不同的數(shù)學(xué)問題嗎?再從同學(xué)們提出的眾多問題中選擇兩個具有代表性的問題來列式和計算。課件出示主題圖下列兩個問題:指名說出兩個問題的算式分別是什么,明確45 + 30和45 + 3是兩位數(shù)加一位數(shù)和兩位數(shù)加整十?dāng)?shù)的加法算式,引出課題——兩位數(shù)加一位數(shù)和整十?dāng)?shù)(不進位)這一層次從學(xué)生熟悉的生活情境出發(fā),選擇學(xué)生熟悉的旅游,讓學(xué)生自己發(fā)現(xiàn)、提出有關(guān)的數(shù)學(xué)問題,從而主動的解決問題。這里通過創(chuàng)造出生動的生活情境來提取例題,符合學(xué)生的年齡、認知特征,既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生感受到數(shù)學(xué)與生活的密切聯(lián)系,容易為學(xué)生所感知,所接受。