解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問(wèn)題是常見(jiàn)的問(wèn)題,本題的易錯(cuò)點(diǎn)是對(duì)△BED是等腰三角形認(rèn)識(shí)不足,解題的關(guān)鍵是對(duì)折疊后的幾何形狀要有一個(gè)正確的分析.三、板書(shū)設(shè)計(jì)矩形矩形的定義:有一個(gè)角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個(gè)角都是直角兩組對(duì)邊分別平行且相等對(duì)角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過(guò)程,把握平行四邊形的演變過(guò)程,遷移到矩形的概念與性質(zhì)上來(lái),明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會(huì)邏輯推理的思維價(jià)值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長(zhǎng)CD到點(diǎn)E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說(shuō)明理由。答案:四邊形ACBE是矩形.因?yàn)镃D是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因?yàn)镈E=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對(duì)角線相等且互相平分的四邊形是矩形)。四、課堂檢測(cè):1.下列說(shuō)法正確的是( )A.有一組對(duì)角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對(duì)角線互相平分的四邊形是矩形 D.對(duì)角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說(shuō)法是否正確(1)有一個(gè)角是直角的四邊形是矩形 ( )(2)四個(gè)角都是直角的四邊形是矩形 ( )(3)四個(gè)角都相等的四邊形是矩形 ( ) (4)對(duì)角線相等的四邊形是矩形 ( )(5)對(duì)角線相等且互相垂直的四邊形是矩形 ( )(6)對(duì)角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請(qǐng)?jiān)偬砑右粋€(gè)條件,使四邊形ABCD是矩形.你添加的條件是 .(寫(xiě)出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時(shí),四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個(gè)角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書(shū)設(shè)計(jì)矩形的判定對(duì)角線相等的平行四邊形是矩形三個(gè)角是直角的四邊形是矩形有一個(gè)角是直角的平行四邊形是矩形(定義)通過(guò)探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過(guò)程,并會(huì)運(yùn)用定理解決相關(guān)問(wèn)題.通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法.通過(guò)動(dòng)手實(shí)踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會(huì)計(jì)算菱形的周長(zhǎng)嗎?三、例題精講例1.課本3頁(yè)例1例2.已知:在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測(cè):1.已知四邊形ABCD是菱形,O是兩條對(duì)角線的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長(zhǎng)是________cm.2.菱形ABCD的周長(zhǎng)為40cm,兩條對(duì)角線AC:BD=4:3,那么對(duì)角線AC=______cm,BD=______cm.3.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對(duì)角線長(zhǎng)為12厘米,則別一條對(duì)角線長(zhǎng)為_(kāi)_______厘米.5.菱形的兩條對(duì)角線把菱形分成全等的直角三角形的個(gè)數(shù)是( ).(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長(zhǎng)和面積
方法三:一個(gè)同學(xué)先畫(huà)兩條等長(zhǎng)的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫(huà)弧,得到兩弧的交點(diǎn)C,連接BC、CD,就得到了一個(gè)四邊形,猜一猜,這是什么四邊形?請(qǐng)你畫(huà)一畫(huà)。通過(guò)探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁(yè)例2 四、課堂檢測(cè)1、下列判別錯(cuò)誤的是( )A.對(duì)角線互相垂直,平分的四邊形是菱形. B、對(duì)角線互相垂直的平行四邊形是菱形C.有一條對(duì)角線平分一組對(duì)角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個(gè)四邊形是菱形的是( )A.兩條對(duì)角線相等 B.兩條對(duì)角線互相垂直C.兩條對(duì)角線相等且垂直 D.兩條對(duì)角線互相垂直平分3、要判斷一個(gè)四邊形是菱形,可以首先判斷它是一個(gè)平行四邊形,然后再判定這個(gè)四邊形的一組__________或兩條對(duì)角線__________.4、已知:如圖 ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長(zhǎng)為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個(gè)四邊形是菱形時(shí),要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個(gè)四邊形是平行四邊形,然后用定義法或判定定理1來(lái)證明菱形.三、板書(shū)設(shè)計(jì)菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對(duì)角線互相垂直的平行四邊形是菱形對(duì)角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過(guò)程,進(jìn)一步提高學(xué)生的推理論證能力,體會(huì)證明過(guò)程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力.
(2)如果對(duì)應(yīng)著的兩條小路的寬均相等,如圖②,試問(wèn)小路的寬x與y的比值是多少時(shí),能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對(duì)應(yīng)邊是否成比例來(lái)判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個(gè)矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因?yàn)榫匦蔚乃膫€(gè)角均是直角,所以在有關(guān)矩形相似的問(wèn)題中,只需看對(duì)應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長(zhǎng)度 .27.1-6教師活動(dòng):教師出示例題,提出問(wèn)題;學(xué)生活動(dòng):學(xué)生通過(guò)例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長(zhǎng)度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長(zhǎng)度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語(yǔ)言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁(yè)習(xí)題4.4
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.
我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫(huà)出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫(xiě)出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
我今天說(shuō)課的內(nèi)容是選自幼兒園建構(gòu)式課程中班下冊(cè)科學(xué)教育活動(dòng)《我愛(ài)大樹(shù)和小花》?!缎戮V要》科學(xué)領(lǐng)域目標(biāo)中明確提出了:培養(yǎng)幼兒愛(ài)護(hù)動(dòng)植物,關(guān)心周圍環(huán)境,親近大自然,珍惜自然資源,有初步的環(huán)保意識(shí)。在我們生活的周圍有各種各樣的樹(shù)和花,對(duì)于孩子來(lái)說(shuō)既熟悉又陌生,每每在戶外活動(dòng)時(shí)孩子總會(huì)不經(jīng)意地去看看、摸摸,有時(shí)還會(huì)說(shuō)一句,如:這顆樹(shù)好大哦,這朵花好漂亮哦,有時(shí)候還會(huì)進(jìn)行追問(wèn),如:這顆叫什么樹(shù),這叫什么花……然而隨著社會(huì)的進(jìn)步人類慢慢淡化了對(duì)身邊花草樹(shù)木的愛(ài)護(hù),甚至親手破壞身邊的環(huán)境,如:亂砍樹(shù)木,亂摘花朵……結(jié)合中班建構(gòu)式課程中的主題教學(xué)《大樹(shù)和小花》的內(nèi)容,我設(shè)計(jì)了符合中班幼兒年齡特點(diǎn)的教學(xué)活動(dòng)《我愛(ài)大樹(shù)和小花》,引導(dǎo)幼兒要保護(hù)身邊的花草樹(shù)木,清楚花草樹(shù)木與人類的關(guān)系以及對(duì)人類的作用。通過(guò)掛圖與教材的閱讀理解保護(hù)花草樹(shù)木的重要性,從而萌發(fā)幼兒愛(ài)護(hù)花草樹(shù)木的情感。
(一)情景導(dǎo)入,引出故事我將出示靴子的圖片,結(jié)合提問(wèn)法引出主題。我會(huì)用神秘的口吻問(wèn):“小朋友們,樹(shù)林里有只可愛(ài)的小豬撿到老師手中拿的這個(gè)東西,可是他不知道這是什么,讓我們一起幫他想想是什么,好嗎?”然后一一提問(wèn),以得到各種不同的答案,激發(fā)幼兒的想象和興趣。(二)講述故事,理解內(nèi)容1、首先我用生動(dòng)有趣的語(yǔ)言配合靴子圖片將《小豬和靴子》完整的講述一遍。2、其次我會(huì)提問(wèn):故事發(fā)生在什么地方?故事中都有誰(shuí)?它們都說(shuō)了什么?你喜歡故事中的小豬嗎?為什么?(幫助幼兒總結(jié)出小豬的性格特點(diǎn)--憨厚、善良、助人為樂(lè))等等。3、再次出示相應(yīng)的圖片完整的講述故事內(nèi)容,讓幼兒利用故事角色對(duì)話。4、引導(dǎo)幼兒自由討論,如:你丟過(guò)東西嗎?心里怎么樣?如果別人撿到了,還給你,你心里又會(huì)怎么樣?那如果你撿到了東西會(huì)怎么做?
語(yǔ)言是人類最重要的交際工具。特別是在信息技術(shù)、科學(xué)技術(shù)飛速發(fā)展的今天,人們交往日益頻繁。它要求社會(huì)成員有較高的語(yǔ)言表達(dá)能力,能用清晰、簡(jiǎn)潔的語(yǔ)言表達(dá)自己的觀點(diǎn)和見(jiàn)解,能夠適應(yīng)語(yǔ)言傳遞技術(shù)現(xiàn)代化的要求,以迎接人機(jī)對(duì)話時(shí)代的到來(lái)。正如《幼兒園教育指導(dǎo)綱要》中說(shuō)的“鼓勵(lì)幼兒大膽、清楚地表達(dá)自己的想法和感受。嘗試說(shuō)明、描述簡(jiǎn)單的事物或過(guò)程,發(fā)展語(yǔ)言表達(dá)能力和思維能力”,因此,鼓勵(lì)幼兒創(chuàng)造性地運(yùn)用語(yǔ)言顯得尤為重要?! ∥覀?cè)谡Z(yǔ)言教學(xué)活動(dòng)中,時(shí)常會(huì)注意培養(yǎng)幼兒的語(yǔ)言想象力和創(chuàng)造力,根據(jù)提供的語(yǔ)言領(lǐng)域目標(biāo),我選擇了詩(shī)歌欣賞。對(duì)于小班幼兒而言,詩(shī)歌欣賞還是有些陌生的。所以,我挑選了比較適合小班幼兒天性的素材《太陽(yáng)和月亮》,并進(jìn)行了一定程度的加工,力求詩(shī)歌生動(dòng)、有趣味性?! 短?yáng)和月亮》這首詩(shī)歌主題單純,內(nèi)容淺顯;語(yǔ)言精練,節(jié)奏明快,韻律和諧,富有兒童情趣;讀起來(lái)朗朗上口,易于朗讀和記憶,它的文學(xué)形式易被低幼兒童所接受。我想,一個(gè)好的幼兒詩(shī)歌,不僅可以豐富幼兒的知識(shí),發(fā)展語(yǔ)言,啟迪智力,而且還可以使幼兒的心靈和情感受到良好的熏陶。培養(yǎng)幼兒對(duì)文學(xué)作品的興趣,更重要的是可以發(fā)展幼兒的想象力和創(chuàng)造思維能力。
二、說(shuō)活動(dòng)目標(biāo) 活動(dòng)目標(biāo)是教學(xué)活動(dòng)的起點(diǎn)和歸宿,對(duì)活動(dòng)起著引導(dǎo)性的作用。根據(jù)《新綱要》在科學(xué)領(lǐng)域中提出:在幼兒生活經(jīng)驗(yàn)的基礎(chǔ)上,幫助幼兒了解自然、環(huán)境與人類生活的關(guān)系。從身邊的小事入手,培養(yǎng)初步的環(huán)保意識(shí)和行為。根據(jù)這一目標(biāo)和要求,結(jié)合中班幼兒年齡特點(diǎn)制定了認(rèn)知、技能、情感三方面的教學(xué)目標(biāo)。1、目標(biāo)一:欣賞圖片閱讀教材,理解圖片內(nèi)容知道花草樹(shù)木對(duì)人類的作用。2、目標(biāo)二:欣賞圖片并根據(jù)生活經(jīng)驗(yàn),說(shuō)出幾種花草樹(shù)木的名稱和作用及其保護(hù)方法。3、目標(biāo)三:了解花草樹(shù)木與人類的依存關(guān)系,萌發(fā)幼兒保護(hù)花草樹(shù)木及環(huán)境的意識(shí),產(chǎn)生愛(ài)樹(shù)愛(ài)花的情感?! 。繕?biāo)定位:通過(guò)欣賞圖片閱讀教材來(lái)了解花草樹(shù)木對(duì)人類的作用,了解花草樹(shù)木是怎樣為人類服務(wù)的,萌發(fā)幼兒愛(ài)護(hù)花草樹(shù)木的情感)三、說(shuō)教法與學(xué)法 《新綱要》中強(qiáng)調(diào)幼兒是中心,教育活動(dòng)應(yīng)該以幼兒的需要,興趣,尤其是幼兒的經(jīng)驗(yàn)來(lái)進(jìn)行,學(xué)決定教。在活動(dòng)中我和幼兒的角色都是教學(xué)活動(dòng)的主人翁,主要是以幼兒為主。讓幼兒在教學(xué)活動(dòng)中享受探究問(wèn)題及解決問(wèn)題的快樂(lè)。所以在教學(xué)活動(dòng)中我采用了“圖片觀察法”運(yùn)用直觀、形象的圖片進(jìn)行欣賞,引導(dǎo)幼兒理解圖片內(nèi)容及其意思?!坝螒蚍ā蓖ㄟ^(guò)游戲讓幼兒親身體驗(yàn)怎樣愛(ài)護(hù)花草樹(shù)木讓幼兒更深一層的了解愛(ài)護(hù)花草樹(shù)木需要做的事情,在游戲中讓幼兒學(xué)會(huì)愛(ài)護(hù)花草樹(shù)木的深刻內(nèi)涵。四、說(shuō)活動(dòng)準(zhǔn)備 活動(dòng)中準(zhǔn)備:掛圖四幅、幼兒用書(shū)第37-38頁(yè)、五幅環(huán)保畫(huà)(例如:樹(shù)木被破壞、花朵被摘……)、制作花朵大樹(shù)頭飾幼兒人數(shù)各一半
三、影響區(qū)域環(huán)境說(shuō)明:環(huán)境是旅游業(yè)的基礎(chǔ),旅游對(duì)環(huán)境保護(hù)具有促進(jìn)作用。世界上很多國(guó)家在發(fā)展旅游業(yè)的同時(shí),都很重視對(duì)旅游資源和環(huán)境的保護(hù),以實(shí)現(xiàn)旅游業(yè)的可持續(xù)發(fā)展。旅游業(yè)的發(fā)展對(duì)環(huán)境也有消極作用,如果旅游與環(huán)境的關(guān)系不處理好,環(huán)境也會(huì)朝著惡化的方向發(fā)展。圖1.10古建修復(fù)圖1.10對(duì)比顯示古建筑修復(fù)前后景觀的變化,說(shuō)明旅游業(yè)的發(fā)展有利于文物古跡和古建筑的保護(hù)。討論:1.列舉旅游業(yè)發(fā)展有利于環(huán)境的措施。提示:建立各種自然保護(hù)區(qū)、申報(bào)歷史文物保護(hù)單位等措施都有利于保護(hù)旅游環(huán)境。2.舉例說(shuō)明旅游對(duì)環(huán)境的消極作用。提示:旅游對(duì)環(huán)境的消極作用主要表現(xiàn)在:由于對(duì)旅游資源開(kāi)發(fā)建設(shè)不當(dāng)或失誤,使生態(tài)環(huán)境惡化;由于大量游客的涌入,排放的各類廢棄物超過(guò)了環(huán)境自凈能力而造成環(huán)境污染;由于大量游客的接觸或不文明行為引起的對(duì)風(fēng)景、文物的破壞等。