1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
三、堅持人民民主專政教師活動:請同學(xué)們閱讀教材P7頁,思考下列問題:為什么要堅持人民民主專政?現(xiàn)階段如何堅持人民民主專政?學(xué)生活動:閱讀課本,找出問題。1、堅持人民民主專政的重要性(1)堅持人民民主專政是四項基本原則之一,是我國的立國之本。(2)堅持人民民主專政是現(xiàn)代化建設(shè)的政治保證。堅持人民民主,才能調(diào)動人民現(xiàn)代化建設(shè)的積極性;堅持對敵對勢力的專政,才能保障人民民主,維護國家安定。2、堅持人民民主專政的新的時代內(nèi)容突出經(jīng)濟建設(shè)服務(wù)職能;為改革開放和現(xiàn)代化建設(shè)創(chuàng)造良好國內(nèi)外環(huán)境;重視法制建設(shè),依法治國;發(fā)展人民民主,加強民主制度建設(shè)。(三)課堂總結(jié)、點評本節(jié)內(nèi)容講述了我國的國家性質(zhì)的有關(guān)知識,懂得我國是人民民主專政的社會主義國家,其本質(zhì)是人民當家作主,我國的人民民主具有廣泛性和真實性,是真正的大多數(shù)人的統(tǒng)治,必須堅持人民民主專政。
4、民主和專政(1)民主,是指在范圍內(nèi),按照和來共同管理國家事務(wù)的國家制度。民主具有鮮明的,民主總是屬于。世界上從來沒有的民主。(2)專政,即主要依靠實行的統(tǒng)治。(3)民主制國家是民主和專政的辯證統(tǒng)一(對立統(tǒng)一)①民主和專政相互區(qū)別、相互對立,民主只適用于,專政則適用于。②民主與專政是相輔相成、互為前提。民主是專政的,專政是民主的。(4)人民民主專政也是民主與專政的辯證統(tǒng)一。三、必須堅持人民民主專政(1)堅持人民民主專政的必然性(原因)第一、堅持人民民主專政是之一,四項基本原則是我國的,是我國國家生存發(fā)展的。第二、堅持人民民主專政是社會主義現(xiàn)代化建設(shè)的。①只有充分發(fā)揚社會主義民主,確保的地位,保證人民,尊重和保障,才能。②只有堅持國家的專政職能,打擊,才能保障,維護。(2)堅持人民民主專政的新的要求:
2、確立教育優(yōu)先發(fā)展地位,提出“科教興國”戰(zhàn)略:①提出“三個面向”指導(dǎo)方針;(即教育要面向現(xiàn)代化,面向世界,面向未來)1983年,當我們國家的改革開放處在起步階段時,鄧小平同志以歷史的眼光,從戰(zhàn)略的高度,為北京景山學(xué)校題詞:“教育要面向現(xiàn)代化,面向世界,面向未來?!倍嗄陙?,這“三個面向”的題詞所蘊含的深刻的教育理念,已經(jīng)成為中國教育改革與發(fā)展的指針,“三個面向”的思想,已經(jīng)深入人心;成為我們教育改革的旗幟和靈魂。②改革教育制度,基礎(chǔ)、中等和高等教育全面發(fā)展;基礎(chǔ)教育——普及九年義務(wù)教育,制定《義務(wù)教育法》(2006年)中等教育——實行普通教育與職業(yè)教育并舉;高等教育——增設(shè)邊緣學(xué)科,建立學(xué)位制,擴大自主權(quán)③實施發(fā)展高等教育的“211工程”計劃;211工程"就是面向21世紀,重點建設(shè)100所左右的高等學(xué)校和一批重點學(xué)科點。
經(jīng)濟因素對人口遷移是主要的,經(jīng)常起作用的因素,是人口遷移的基本動因。通常情況下,經(jīng)濟發(fā)展水平的差異決定著人們遷移的方向,人們遷移是為了追求更好的就業(yè)機會和更高的經(jīng)濟收入。經(jīng)濟發(fā)展水平高的地區(qū)往往成為人口遷入地,人口的遷移量取決于遷入地對勞動力的需求狀況和遷出地人口相對過剩的狀況。師:20世紀80年代深圳、珠海等地設(shè)立了經(jīng)濟特區(qū)’吸I了大量的人口遷入。這又說明了什么問題? (生回答,師總結(jié))從宏觀上看,經(jīng)濟布局也會造成大量的人口遷移。說明經(jīng)濟越發(fā)達,對人口的吸引力(即拉力)越大。經(jīng)濟發(fā)展水平、規(guī)模和速度決定著人口遷移的流向、流量和流速。師:交通和通訊又如何影響著人口的遷移呢?生:交通和通訊的發(fā)展,縮小了地區(qū)之間的距離,促進了人口遷移。
一、教材分析《政府的責任:對人民負責》是人教版思想政治必修2《政治生活》第二單元第三課的內(nèi)容。在此之前,學(xué)生們已經(jīng)學(xué)習了《政府的職能:管理與服務(wù)》,這為過渡到本框題的學(xué)習起到了鋪墊的作用。本框進一步闡述了政府的宗旨和責任,是第三課的落腳點,也是本課的教學(xué)重點。二、教學(xué)目標(一)知識目標了解我國堅持對人民負責原則的基本要求;了解我國政府為公民求助或投訴提供的途徑和方式。(二)能力目標采用多媒體教學(xué),通過讓學(xué)生了解溫總理的具體事例開展討論,提高自主學(xué)習、合作學(xué)習和探究學(xué)習的能力。(三)情感、態(tài)度與價值觀目標感受我國政府是便民利民的政府,是為人民服務(wù)的政府,作出了解政府、理解政府、相信政府和支持政府的價值選擇。同時,知道公民也應(yīng)向政府尋求解決自身困難,維護自身合法權(quán)益的幫助。
過渡:下面我們從時間角度分析世界人口數(shù)量變化的趨勢是怎樣的呢?為什么會這樣呢?板書:1、人口自然增長的時間變化(引導(dǎo)學(xué)生讀課本圖1.2和圖1.3,讓學(xué)生分析)教師首先讓學(xué)生說出閱讀地理曲線統(tǒng)計圖的一般步驟和方法,然后總結(jié)歸納:1、 讀圖名。2、 讀各個坐標分別表示什么變量(兩圖橫坐標均表示時間,縱坐標均為相應(yīng)時期人口數(shù))。3、 判讀圖形變化特征(兩圖中曲線曲率的變化反映對應(yīng)時段內(nèi)人口自然增長率的大?。?。4、 思考變量之間的因果關(guān)系(兩圖均反映不同歷史時期世界人口數(shù)量增長的不同特點)。問:世界人口數(shù)量變化的總趨勢是什么?(讓學(xué)生結(jié)合課本P2讀圖思考題,分析回答同時讓學(xué)生閱讀課本圖1.3,在圖1.2中找出圖1.3所在的時段,指導(dǎo)學(xué)生自學(xué)P3第一段,讓學(xué)生分析近100年全球人口快速增長的原因。最后師生共同歸納總結(jié),填寫下表。)
生1:公平性原則——同代人之間要公平,代際之間、人類與其他生物種群之間、不同國家與地區(qū)之間也要公平。生2:持續(xù)性原則——地球的承載力是有限的,人類的經(jīng)濟活動和社會發(fā)展必須保持在資源和環(huán)境的承載力之內(nèi)。生3:共同性原則——發(fā)展經(jīng)濟和保護環(huán)境是全世界各國共同的任務(wù),需要各國的共同參與。同時,地球作為一個整體,地區(qū)性問題往往會變?yōu)槿蛐詥栴},所以地區(qū)的決策和行動,應(yīng)有助于實現(xiàn)全球整體的協(xié)調(diào)?;顒优c探究:2·閱讀下面一篇新聞報道,你認為“給蛇讓道”有沒有必要?答:有必要·人類在森林區(qū)內(nèi)修筑公路,已經(jīng)侵占和破壞了蛇的生存環(huán)境,如果再不對蛇的遷移進行保護,蛇數(shù)量的減少以至滅絕將不可避免。這種做法體現(xiàn)了可持續(xù)發(fā)展的公平性原則和共同性原則。3·用可持續(xù)發(fā)展的觀念作為衡量標準,對下列觀點作出評價。(1)人類有義務(wù)保護地球上所有的物種,人類的發(fā)展不應(yīng)該危及其他物種的生存。答:正確。符合可持續(xù)發(fā)展的公平性原則。
一、教材分析隨著我國民主政治不斷發(fā)展,人民對行使民主權(quán)利的意識不斷增強,人民越來越關(guān)注自己權(quán)利的實現(xiàn)。人民代表大會是人民行使國家權(quán)力的機關(guān),對人民代表大會的地位,構(gòu)成,人民如何行使自己的權(quán)利的,本框體給予了詳細的闡述,同時也為下一框體的學(xué)習奠定了基礎(chǔ)。二、教學(xué)目標:(一)、知識目標1、知道人民代表大會是我國的國家權(quán)力機關(guān),人民代表大會的主要職權(quán)。2、了解人民代表的法律地位、權(quán)利和義務(wù)。(二)、能力目標提高運用馬克思主義立場、觀點、方法分析政治生活的能力。增強收集材料的能力,能夠從報刊、書籍等渠道查閱收集有關(guān)人民代表大會制度有關(guān)資料用于學(xué)習。(三)、情感、態(tài)度與價值觀目標感悟人民代表大會制度的優(yōu)越性,實例為完善和鞏固人民代表大會制度而努力的觀念。
人民代表的權(quán)力:除審議各項議案、表決各項決定外,還享有提案權(quán)和質(zhì)詢權(quán)。提案權(quán)是指人民代表有權(quán)依照法律規(guī)定的程序,向人民代表大會提出議案的權(quán)力。質(zhì)詢權(quán)是指人民代表有權(quán)依照法律規(guī)定的程序,對政府等機關(guān)的工作提出質(zhì)問并要求回答的權(quán)力。2、堅持科學(xué)民主決策教師活動:請同學(xué)們閱讀教材57頁“三鏡頭”,并思考、討論所提問題。學(xué)生活動:閱讀課本,認真思考并積極討論。教師點評:鏡頭一反映人大代表行使審議權(quán)、表決權(quán);鏡頭二反映人大代表行使提案權(quán);鏡頭三反映人大代表行使監(jiān)督權(quán)。人民代表代表人民認真行使自己的職權(quán),有利于維護人民利益,改進國家機關(guān)的工作。(三)課堂總結(jié)、點評本節(jié)內(nèi)容主要講述了我國人民代表大會的有關(guān)知識,通過對人民代表大會的性質(zhì)、組成、職權(quán)等內(nèi)容的理解與把握,進一步感受我們的國家是人民當家作主的國家,是為人民服務(wù)的。
1.根據(jù)課程標準的要求。本單元的主題是“生活智慧與時代精神”,課程標準的要求主要是引導(dǎo)學(xué)生“思考日常生活富有哲理的事例,感悟哲學(xué)是世界觀的學(xué)問,能夠開啟人的智慧”,“解釋哲學(xué)的基本問題”,“分析實例,說明真正的哲學(xué)是時代精神的精華,明確馬克思主義哲學(xué)在人類認識史上的重要地位”。這些問題,綜合起來就是使學(xué)生明確哲學(xué)與我們生活的關(guān)系,認識學(xué)習哲學(xué)特別是馬克思主義哲學(xué)對我們?nèi)松淖饔谩R虼耍骄勘締栴}有助于學(xué)生更好地理解本單元的內(nèi)容,完成本單元的教學(xué)目標。2.根據(jù)學(xué)生的實際需要。學(xué)習哲學(xué)特別是馬克思主義哲學(xué),可以幫助學(xué)生樹立正確的世界觀、人生觀和價值觀,這也是學(xué)習哲學(xué)的主要目的。但在學(xué)生中還不同程度地存在著“哲學(xué)與我們的生活很遠”、“哲學(xué)與我無關(guān)”、“哲學(xué)對我將來從事自然科學(xué)的研究沒有什么用處”等認識,這些都影響著學(xué)生對哲學(xué)學(xué)習的態(tài)度和哲學(xué)作用的發(fā)揮。設(shè)置本探究問題,有助于幫助學(xué)生澄清這些模糊認識。
一、教材分析本框共有兩個目題:第一目從實踐含義入手,引出實踐的三大特征;第二目從實踐是認識的來源、是認識發(fā)展的動力、是檢驗認識的真理性的唯一標準、是認識的目的和歸宿四個方面論述 了實踐是認識的基礎(chǔ)。從地位上看,學(xué)好本框不僅有利于從總體上把握各課之間的內(nèi)在聯(lián)系,而且能深刻理解馬克思主義哲學(xué)的鮮明特點和本質(zhì)特征,實現(xiàn)全書的教學(xué)目的,在全書中處于重要的地位。二、教學(xué)目標1.知識目標:識記實踐的含義、實踐的構(gòu)成要素、實踐的特點。理解實踐具有三個基本特征、實踐是認識的基礎(chǔ)2.能力目標:培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的能力3.情感、態(tài)度、價值觀目標:通過學(xué)習,使學(xué)生樹立實踐第一的觀點,從而自覺投入到實踐之中去。三、教學(xué)重點難點重點:實踐是認識的來源難點:實踐的基本特征