9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關(guān)系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過點(diǎn)B與直線a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補(bǔ)充說明:例二告訴我們一種判斷異面直線的方法:與一個(gè)平面相交的直線和這個(gè)平面內(nèi)不經(jīng)過交點(diǎn)的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關(guān)系?并畫圖說明.解: 直線a與直線c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內(nèi).
問題導(dǎo)入:問題一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號分別是1,2,3,4的4個(gè)球,除標(biāo)號外沒有其他差異。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
例7 用描述法表示拋物線y=x2+1上的點(diǎn)構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點(diǎn)構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點(diǎn)的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實(shí)數(shù).變式2.[變條件,變設(shè)問]本題中點(diǎn)的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實(shí)數(shù).解題技巧(認(rèn)識集合含義的2個(gè)步驟)一看代表元素,是數(shù)集還是點(diǎn)集,二看元素滿足什么條件即有什么公共特性。
2學(xué)情分析1、學(xué)生學(xué)習(xí)美術(shù)的態(tài)度:很多學(xué)生上美術(shù)課時(shí)會抱著“玩”的心理,針對學(xué)生的這種思想,我們應(yīng)當(dāng)根據(jù)學(xué)生的年齡特點(diǎn),在備課過程中注意挖掘教材中有趣的內(nèi)容,尋找學(xué)生的興趣點(diǎn),充分地讓美術(shù)教學(xué)體現(xiàn)出身心愉悅的活動特點(diǎn),寓教于樂,防止把美術(shù)課變成一種枯燥的令人生厭的勞動。2、學(xué)生認(rèn)知發(fā)展分析:在美術(shù)課堂上常常聽到這樣的聲音:“我畫(做)不好”、“我不會畫(做)”;這就需要美術(shù)教師在課堂教學(xué)中注重引導(dǎo)學(xué)生感受、觀察、體會、表現(xiàn),讓學(xué)生在一系列“玩中學(xué)”的活動過程中慢慢樹立信心。所以圍繞本課教學(xué)目的和任務(wù),我采用情境教學(xué)法、觀察對比法、直觀演示法三種教學(xué)方式;學(xué)生運(yùn)用四種方法進(jìn)行學(xué)習(xí):觀察法、討論法、實(shí)踐體驗(yàn)法、合作交流法;努力營造一個(gè)開放和諧的課堂氛圍,順利完成教學(xué)目標(biāo)。
3課題類型造型表現(xiàn)4教學(xué)目標(biāo)1、認(rèn)識三原色,讓學(xué)生初步了解三原色的知識。2、觀察兩個(gè)原色調(diào)和之后產(chǎn)生的色彩變化,說出由兩原色調(diào)出的第三個(gè)顏色(間色)3、能夠調(diào)出預(yù)想的色彩,并用它們涂抹成一幅繪畫作品。5重點(diǎn)難點(diǎn)1、引導(dǎo)學(xué)生觀察三原色在相互流動中的色彩變化。2、引導(dǎo)學(xué)生進(jìn)行色彩的調(diào)和、搭配。3、培養(yǎng)學(xué)生愛色彩、善于動手、善于觀察、善于動腦的能力。
2、通過品嘗餅干、觀察餅干、觸摸餅干,感知形狀的基本特征,大膽想象其他圓形、正方形、三角形的物體?! ?3、在活動中愿意大膽的講述?!? 活動準(zhǔn)備: 1、教具: ——圓形、三角形、正方形的餅干若干,放置托盤中,并用蓋布蓋住?! ?——圓形、三角形、正方形圖片各一個(gè)?!? 2、學(xué)具 ——幼兒操作材料每人一份,彩色筆若干?! ?——各種類似圓形、三角形、正方形的物品,例如:圓盤子、書、三角鐵、鏡子、積木、三角尺、插花等,散放在活動室的四周。
2學(xué)情分析二年級學(xué)生活潑可愛,思維獨(dú)特,喜歡按照自己的想法自由地表現(xiàn)畫面。好奇心強(qiáng),愛表現(xiàn)自己,但動手能力較差,只能用簡單的工具和繪畫材料來稚拙地表現(xiàn)自己的想法。本課以學(xué)生親切、熟悉的名字為題材,更好的激發(fā)學(xué)生的表現(xiàn)欲望和獨(dú)創(chuàng)思維,讓學(xué)生能夠自信、大膽、自由地通過美術(shù)形式表達(dá)想法與感情。3重點(diǎn)難點(diǎn)重點(diǎn):設(shè)計(jì)具有自己特色的名字。難點(diǎn):能對名字的字形進(jìn)行分析,巧妙地運(yùn)用筆畫特征進(jìn)行想象設(shè)計(jì)。教學(xué)活動
2、兒歌總結(jié)。我們想出了這么多的愛護(hù)公物的好辦法,王老師把他們都藏在兒歌里了,一起念念吧。愛護(hù)公物我能行小朋友,講文明,愛護(hù)公物我能行。不在桌上亂刻畫,挪動桌椅要小心。衛(wèi)生用具要愛惜,開門開窗手腳輕。雪白墻壁不留痕,對待花木有愛心。學(xué)校圖書我愛護(hù),損壞及時(shí)來修補(bǔ)。路遇破壞會制止,勸說他人有耐心。體育器材都愛護(hù),愛護(hù)公物我能行!我能行!小結(jié):愛護(hù)公物我能行,不單單是一句口號,更要落實(shí)在我們的實(shí)際行動中3、課后小小約定:(課件出示班級公約)愛護(hù)公物需要一份關(guān)愛,一份呵護(hù),更需要一份約定。相信我們班的孩子一定能在約定中開出愛護(hù)之花,因?yàn)槲覀冎?,公物是大家的,需要我們一起愛護(hù)她。4、課后整理:學(xué)生輕輕整理學(xué)習(xí)用品,輕輕擺放桌椅,安靜有序離開教室。
師介紹念白主要分京白和韻白:京白是經(jīng)過藝術(shù)加工的北京方言,節(jié)奏鮮明,重點(diǎn)突出。韻白具有一種典雅而夸張的韻味,是對古代人物語言的藝術(shù)變形。(用《紅燈記》中李奶奶的一句話:“你姓陳,我姓李,你爹他姓張!”示范用京白,韻白念后,帶學(xué)生用京白學(xué)念兩遍。)(五) 再聽現(xiàn)代京劇片段《都有一顆紅亮的心》1. 引導(dǎo)學(xué)生結(jié)合音樂欣賞,初步了解感受其唱腔特點(diǎn)。師:京劇主要兩大唱腔(二黃原板與西皮流水),今天我們來了解下“西皮流水”唱腔的點(diǎn):投影西皮流水是一種節(jié)奏緊湊;旋律起伏變化比較大;唱腔明朗、活潑、流暢;善于表現(xiàn)喜悅、激動、高昂的情緒唱腔。(六)課堂小結(jié)京劇是博大精深的,這節(jié)課僅僅給同學(xué)們起到了引導(dǎo)作用,希望這節(jié)課能成為我們熱愛京劇的良好開端,讓我們打開京劇大門,一起去真正揭開京劇神秘的面紗,做一個(gè)自豪的中國人。
四、說教法學(xué)法這篇課文淺顯易懂、生動有趣,在教學(xué)中應(yīng)以讀為本,應(yīng)讓學(xué)生在主動積極的思維和情感活動中,加深理解和體驗(yàn),有所感悟和思考,受到情感熏陶,獲得思想啟迪,享受審美樂趣。因此,在教學(xué)中,引導(dǎo)學(xué)生入境、想象、美讀、感悟,引導(dǎo)學(xué)生在讀中感悟,在讀中激情,在讀中體驗(yàn)、品味,讓學(xué)生真正走進(jìn)大自然,體驗(yàn)大自然,發(fā)現(xiàn)大自然,激發(fā)學(xué)生熱愛大自然的感情。 1.創(chuàng)設(shè)情境,走進(jìn)文本:在教學(xué)中,要讓學(xué)生自己閱讀、自己學(xué)會閱讀。教學(xué)中我創(chuàng)設(shè)了情境,讓大自然帶領(lǐng)學(xué)生聆聽了一場特殊的音樂會,縮短了學(xué)生與文本的空間距離,讓學(xué)生置身于自然之中,儼然是大自然中的一員,在情境中感知,體會到大自然聲音的美妙,與文本產(chǎn)生了共鳴,激發(fā)了學(xué)生的學(xué)習(xí)興趣,讓學(xué)生成為學(xué)習(xí)的主人。 2.美讀感悟,放飛想象:在教學(xué)中始終以“大自然中這些聲音真是太美妙了”貫串始終,重點(diǎn)指導(dǎo)學(xué)生美讀課文,抓住描寫聲音的詞,邊讀邊思考,大膽的展開想象,有感情地讀,配樂讀,自由讀,分組讀,師生合讀,全班齊讀,在讀中生成自己獨(dú)特的感受、體驗(yàn)和理解,感受風(fēng)聲的美妙,水聲的有趣,動物聲的快樂,同時(shí)培養(yǎng)學(xué)生的語感。 3.拓展延伸,提高能力:布置學(xué)生課后在大自然找一些新發(fā)現(xiàn),拓展學(xué)生的學(xué)習(xí)空間,擴(kuò)大視野,增長知識。讓學(xué)生在課內(nèi)外的學(xué)習(xí)中提高語文素養(yǎng)。
一、說教材《讀不完的大書》這篇文章是統(tǒng)編教材小學(xué)語文第五冊第七單元中的一篇精讀課文。課文體現(xiàn)了大自然的奧秘和樂趣,從而培養(yǎng)學(xué)生的觀察能力,激發(fā)學(xué)生熱愛大自然的情感,探究大自然的奧秘。課文的重點(diǎn)是“聯(lián)系上下文理解重點(diǎn)句子的意思,感受本文語言的生動、有趣;理解作者為什么把大自然稱為一本讀不完的大書?!备鶕?jù)課標(biāo)對第二學(xué)段的要求:“能初步把握文章的主要內(nèi)容”,教學(xué)時(shí)一要幫助學(xué)生理清文章的思路。熟讀課文之后,引導(dǎo)學(xué)生說說課文都寫了哪些好玩的東西。二要引導(dǎo)學(xué)生抓住重點(diǎn)語句討論、交流。除了課后思考題二所列的4個(gè)句子外,還可以鼓勵(lì)學(xué)生根據(jù)自己的理解再提出幾個(gè)句子。討論、交流時(shí),可在引導(dǎo)學(xué)生理解語句含義的基礎(chǔ)上,啟發(fā)學(xué)生聯(lián)系實(shí)際。二、說教學(xué)目標(biāo)1.會認(rèn)11個(gè)生字,會寫12個(gè)生字。2.正確、流利、有感情地朗讀課文,讀出對大自然的喜愛和贊美之情。3.能找出作者具體描寫了哪些有趣的事物,感受課文生動的語言。
2、學(xué)生分析 其實(shí)學(xué)生對身體并不陌生,可以看得到、摸得著,但有時(shí)越是熟悉的事物學(xué)生越不容易產(chǎn)生關(guān)注,學(xué)生并不會花很多的時(shí)間去探究身體更多的奧秘,這恰是我們教學(xué)有價(jià)值的地方。我們可以在“熟悉”兩個(gè)字上做文章,在課堂中利用學(xué)生已有的知識,建構(gòu)本課新的知識體系。我期望通過本課教學(xué)后,學(xué)生不再對自己的身體熟視無睹,而會運(yùn)用各種觀察方法進(jìn)行細(xì)致入微地觀察,還能在這種強(qiáng)烈的興趣地鼓舞下通過查資料等各種方式深入地研究自己的身體。
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
教學(xué)過程:一、組織教學(xué),導(dǎo)入學(xué)習(xí)1.觀察導(dǎo)入,激發(fā)興趣(教具出示)2.教師和學(xué)生一起做猜節(jié)日的游戲,激發(fā)學(xué)生的興趣。 每年的9月10日都是教師們最開心的日子,也是學(xué)生們表達(dá)對老師尊敬的日子,中國自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會應(yīng)當(dāng)尊重教師。