2、教材所處的地位和重、難點(diǎn):表內(nèi)乘法是學(xué)生學(xué)習(xí)乘法的開始,它是學(xué)生今后學(xué)習(xí)表內(nèi)除法和多位數(shù)乘、除法的基礎(chǔ)。教材內(nèi)容的呈現(xiàn)是在學(xué)生學(xué)“2—5的乘法口訣”以后。由于他們已經(jīng)具有學(xué)習(xí)2—5的乘法口訣的基礎(chǔ),所以教材的呈現(xiàn)形式?jīng)]有給出一個(gè)完整的乘法算式和一句完整的口訣,意在讓學(xué)生主動(dòng)探索歸納出6的乘法口訣。體現(xiàn)了提高學(xué)生學(xué)習(xí)獨(dú)立性要求的編寫意圖。熟練口算表內(nèi)乘法,是每個(gè)學(xué)生應(yīng)具備的最基本的計(jì)算能力。因此,本課的重點(diǎn)應(yīng)該是讓學(xué)生理解6的乘法口訣的形成過程;難點(diǎn)是怎樣去熟記并利用乘法口訣來解決生活中的實(shí)際問題。3、教學(xué)目標(biāo):①通過觀察、探索,使學(xué)生知道6的乘法口訣的形成過程。②通過教學(xué)活動(dòng),培養(yǎng)學(xué)生觀察能力、判斷能力、合作交流和語言表達(dá)能力。③讓學(xué)生體驗(yàn)生活中處處有數(shù)學(xué),會(huì)用數(shù)學(xué)知識(shí)解決生活中的問題。
《8的乘法口訣》是《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)》二年級上冊的內(nèi)容。乘法口訣是學(xué)生學(xué)習(xí)乘法的開始,它是學(xué)生今后學(xué)習(xí)表內(nèi)除法和多位數(shù)乘、除法的基礎(chǔ)。教材的呈現(xiàn)是在學(xué)生學(xué)了“2——7的乘法口訣”以后,所以教材呈現(xiàn)形式?jīng)]有給出一個(gè)完整的乘法算式和一句完整的口訣,意在讓學(xué)生主動(dòng)歸納出8的乘法口訣。體現(xiàn)了學(xué)生學(xué)習(xí)獨(dú)立性要求的編寫意圖。熟練口算表內(nèi)乘法,是每個(gè)學(xué)生應(yīng)具備的最基本的計(jì)算能力。因此,本課的重點(diǎn)應(yīng)該是讓學(xué)生理解8的乘法口訣的形成過程;難點(diǎn)是怎樣去熟記并利用乘法口訣來解決生活中的實(shí)際問題?;趯滩牡睦斫?,我把教學(xué)目標(biāo)定為:(1)認(rèn)知目標(biāo):通過觀察、探索,使學(xué)生知道8的乘法口訣的形成過程。(2)能力目標(biāo):通過教學(xué)活動(dòng),培養(yǎng)學(xué)生的觀察能力、判斷能力、合作交流和語言表達(dá)能力。(3)情感目標(biāo):激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)生活中處處有數(shù)學(xué),會(huì)用數(shù)學(xué)知識(shí)解決生活中的問題。
(第三的環(huán)節(jié))觀察比較,巧妙記憶(英國的社會(huì)學(xué)家斯賓塞說:教育中應(yīng)該盡量鼓勵(lì)個(gè)人發(fā)展的過程。應(yīng)該引導(dǎo)兒童自己進(jìn)行探討,自己去推論。給他們講的應(yīng)該盡量少些,而引導(dǎo)他們?nèi)グl(fā)現(xiàn)的應(yīng)該盡量多些)首先讓學(xué)生獨(dú)立觀察,再把記憶口訣的好方法跟小組的成員說一說。接著讓學(xué)生把自己的好方法和大家一起分享:有學(xué)生說:“我的方法是積的十位比幾個(gè)9的幾少1,個(gè)位加十位等于九,所以個(gè)位是9減十位上的數(shù)。比如:6乘9,積的十位就是5,個(gè)位是9減5就是4。”還有學(xué)生說:“我的方法跟他的不同,我用的方法是:幾個(gè)9就跟幾十比,有幾十減幾。比如:4乘9,跟40比,用40減4就是36。分享了同學(xué)的好方法我指導(dǎo)學(xué)生手指記憶口訣的方法。接著讓學(xué)生用你喜歡的方法試背口訣。然后我還采用師生對口令,同桌對口令,男女生比賽對口令方式進(jìn)行練習(xí)。
在課堂上,我通過點(diǎn)播和啟發(fā),充分調(diào)動(dòng)學(xué)生的主體意識(shí),讓學(xué)生體會(huì)成功的喜悅。在這里放手讓學(xué)生找規(guī)律,順勢而導(dǎo)地將其引向“精彩”,使課堂教學(xué)在“預(yù)設(shè)”與“生成”的融合中放出異彩。當(dāng)然了,更重要的是培養(yǎng)學(xué)生掌握找規(guī)律的數(shù)學(xué)思考方法,發(fā)展了數(shù)學(xué)能力。在記憶口訣之前,我讓學(xué)生找找口訣中的規(guī)律,然后讓學(xué)生運(yùn)用自己發(fā)現(xiàn)的特點(diǎn)去記憶口訣,這樣學(xué)生就不會(huì)感到枯燥疲憊,而會(huì)主動(dòng)積極的去記憶,讓學(xué)生感到自己才是學(xué)習(xí)的主人。課堂上我還設(shè)計(jì)了《西游記》中的一段故事情節(jié)幫助記憶口訣,通過有趣的人物形象,大大地激發(fā)了學(xué)生對口訣的興趣。對于特別難記的口訣,讓學(xué)生討論交流、尋找規(guī)律,有效地激發(fā)孩子的探究心和創(chuàng)造欲,學(xué)生想出了聯(lián)系上、下句記憶,或者用以前學(xué)的乘法口訣進(jìn)行記憶等方法。(四)分層練習(xí),由淺入深。這里的練習(xí)主要分基本練習(xí)及拓展性綜合練習(xí)(解決實(shí)際問題)兩類。首先,通過對口令、口算練習(xí),進(jìn)一步鞏固口訣。
3、在學(xué)生已有了乘法口訣的數(shù)學(xué)模式后,引導(dǎo)學(xué)生運(yùn)用已有經(jīng)驗(yàn),親自參與其它乘法口訣的學(xué)習(xí),充分發(fā)揮學(xué)生的主體作用,發(fā)展學(xué)生的思維。4、多采用提問讓學(xué)生思考的方法,讓學(xué)生在操作過程中想老師提出的問題,培養(yǎng)學(xué)生的抽象概括能力。如:在擺了兩根小棒后問學(xué)生:現(xiàn)在擺了幾根小棒?可以用幾表示?擺了幾個(gè)2根?用乘法算式應(yīng)怎樣表示等。5、運(yùn)用磁性黑板擺實(shí)物,讓學(xué)生能夠通過觀察實(shí)物直觀感知,如:問2個(gè)2是多少?學(xué)生實(shí)在不能想的可以通過看圖數(shù)數(shù)來完成,這樣便可以照顧學(xué)習(xí)有困難的學(xué)生。學(xué)生已經(jīng)對乘法的含義有了初步的理解,掌握口訣就比較容易;但是,要熟記乘法口訣并準(zhǔn)確的運(yùn)用還需花較大的精力和時(shí)間,因此,要引導(dǎo)學(xué)生學(xué)會(huì)由加法到乘法,再到口訣的歸納法,由易到難,循序漸進(jìn)的方法。如:2個(gè)2,可以用加法22=4,再到寫乘法算式2×2=4,再歸納出口訣“二二得四”;先引導(dǎo)學(xué)生說出1個(gè)2是多少?編出口訣,再引導(dǎo)說出2個(gè)2是多少,編出口訣等等。
二、說教學(xué)目標(biāo)、教學(xué)重難點(diǎn)我對教材的認(rèn)識(shí),以及學(xué)生的年齡特點(diǎn),我確定的教學(xué)目標(biāo)有3個(gè):知識(shí)與技能目標(biāo):讓使學(xué)生經(jīng)歷編5的乘法口訣的過程,進(jìn)一步理解乘法的意義,掌握5的乘法口訣,提高應(yīng)用乘法解決實(shí)際問題的能力。過程與方法目標(biāo):使學(xué)生在編口訣和用口訣的過程中,初步培養(yǎng)發(fā)現(xiàn)簡單規(guī)律的能力,積累積極的學(xué)習(xí)情感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心。情感與態(tài)度目標(biāo):讓學(xué)生通過數(shù)學(xué)活動(dòng)進(jìn)一步體會(huì)數(shù)學(xué)在現(xiàn)實(shí)生活中的應(yīng)用,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的積極情感,并獲得成功的體驗(yàn),提高學(xué)好數(shù)學(xué)的信心。教學(xué)重點(diǎn)是:經(jīng)歷編口訣的過程,理解每句口訣的含義;難點(diǎn)是:學(xué)生自己嘗試探究并得出5的乘法口訣。三、說教法學(xué)法接著,我說說本課采用的教學(xué)方法。圍繞本課的教學(xué)目標(biāo)和教學(xué)重難點(diǎn),我采用了設(shè)置問題情境、激發(fā)學(xué)習(xí)興趣與組織學(xué)生動(dòng)手實(shí)踐相結(jié)合的方法。
方法總結(jié):絕對值小于1的數(shù)也可以用科學(xué)記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)前面的0的個(gè)數(shù)所決定.【類型二】 將用科學(xué)記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點(diǎn)向左移動(dòng)相應(yīng)的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學(xué)記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a(bǔ)的小數(shù)點(diǎn)向左移動(dòng)n位所得到的數(shù).三、板書設(shè)計(jì)用科學(xué)記數(shù)法表示絕對值小于1的數(shù):一般地,一個(gè)小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負(fù)整數(shù).從本節(jié)課的教學(xué)過程來看,結(jié)合了多種教學(xué)方法,既有教師主導(dǎo)課堂的例題講解,又有學(xué)生主導(dǎo)課堂的自主探究.課堂上學(xué)習(xí)氣氛活躍,學(xué)生的學(xué)習(xí)積極性被充分調(diào)動(dòng),在拓展學(xué)生學(xué)習(xí)空間的同時(shí),又有效地保證了課堂學(xué)習(xí)質(zhì)量
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運(yùn)算計(jì)算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對值的性質(zhì)計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計(jì)1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個(gè)不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個(gè)數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計(jì)算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時(shí)要多舉幾個(gè)例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗(yàn)自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過觀察、實(shí)踐、討論等活動(dòng),經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵(lì)學(xué)生勇于探索的精神.通過交流互動(dòng),逐步養(yǎng)成合作的意識(shí)及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.
解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.
因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時(shí),p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時(shí),p與S成反比例.另外,利用反比例函數(shù)的知識(shí)解決實(shí)際問題時(shí),要善于發(fā)現(xiàn)實(shí)際問題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計(jì)反比例函數(shù)的應(yīng)用實(shí)際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識(shí)的綜合經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程,提高運(yùn)用代數(shù)方法解決問題的能力,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).通過反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點(diǎn)Q時(shí)在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對應(yīng)線段的長度.三、板書設(shè)計(jì)投影的概念與中心投影投影的概念:物體在光線的照射下,會(huì) 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點(diǎn)光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關(guān)系的活動(dòng)中,體會(huì)立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過在燈光下擺弄小棒、紙片,體會(huì)、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問題、分析問題的能力.
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對應(yīng)關(guān)系.通過具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個(gè)比例式.解析:因?yàn)楸绢}中沒有明確告知是求1,2,2的第四比例項(xiàng),因此所添加的線段長可能是前三個(gè)數(shù)的第四比例項(xiàng),也可能不是前三個(gè)數(shù)的第四比例項(xiàng),因此應(yīng)進(jìn)行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個(gè)數(shù)成比例,則應(yīng)滿足其中兩個(gè)數(shù)的比等于另外兩個(gè)數(shù)的比,也可轉(zhuǎn)化為其中兩個(gè)數(shù)的乘積恰好等于另外兩個(gè)數(shù)的乘積.
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學(xué)生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長比,面積比解決實(shí)際問題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對知識(shí)的應(yīng)用意識(shí).
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.