1、教材分析 本課選自普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材,人民教育出版社歷史必修(1),第六單元:現(xiàn)代中國的政治建設(shè)與祖國統(tǒng)一,第22課——祖國統(tǒng)一大業(yè)。祖國統(tǒng)一始終是中國人民的共同夙愿。本課內(nèi)容主要敘述了“一國兩制”的偉大構(gòu)想,為完成祖國統(tǒng)一大業(yè)提出了一個(gè)創(chuàng)造性的指導(dǎo)方針。香港、澳門的回歸,是“一國兩制” 偉大構(gòu)想的成功實(shí)踐。在“一國兩制”方針指導(dǎo)下,海峽兩岸實(shí)現(xiàn)了一次歷史性的突破。揭示了“一國兩制” 的構(gòu)想,對(duì)推動(dòng)完成祖國完全統(tǒng)一大業(yè),實(shí)現(xiàn)中華民族偉大復(fù)興具有現(xiàn)實(shí)指導(dǎo)意義。 2、學(xué)情分析通過調(diào)查知道,學(xué)生對(duì)本節(jié)的基本史實(shí)有一定了解。但是,高一新生習(xí)慣于知識(shí)的記憶和教師的講解,不能深入分析歷史現(xiàn)象的內(nèi)涵和外延;不能進(jìn)一步探究事物的因果關(guān)系和理解事物的本質(zhì);并且需要進(jìn)一步拓展思維的廣度和深度,實(shí)現(xiàn)從一維目標(biāo)到三維目標(biāo)的飛躍。
尊敬的各位評(píng)委、各位老師,大家好,我今天說課的內(nèi)容是九年義務(wù)教育人教版小學(xué)數(shù)學(xué)一年級(jí)上冊第四單元《認(rèn)識(shí)圖形》的第一課時(shí)——認(rèn)識(shí)圖形。下面我將從說教材、說教法與學(xué)法、說教學(xué)過程和說板書設(shè)計(jì)這四方面來談?wù)勎覍?duì)本課的教學(xué)設(shè)想。一、說教材: 1、教材分析 首先我對(duì)本教才進(jìn)行簡單的分析,課程標(biāo)準(zhǔn)把空間與圖形作為義務(wù)教育階段培養(yǎng)學(xué)生初步創(chuàng)新精神和實(shí)踐能力的一個(gè)重要的學(xué)習(xí)內(nèi)容。《認(rèn)識(shí)圖行》是本冊教材《認(rèn)識(shí)圖形》的起始課,旨在認(rèn)識(shí)長方體、正方體、圓柱和球這些立體圖形,認(rèn)識(shí)這幾種圖形有助于發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生初步的觀察能力,動(dòng)手操作能力和交流能力。 2、說教學(xué)目標(biāo) 依據(jù)一年級(jí)學(xué)生的心理特點(diǎn)和的認(rèn)知能力,我確定了以下教學(xué)目標(biāo): 1、知識(shí)與技能:通過觀察操作,初步認(rèn)識(shí)長方體,正方體,球和圓柱體。 2、過程與方法:在觀察、操作、比較等活動(dòng)過程中,培養(yǎng)學(xué)生抽象、概括、實(shí)踐、創(chuàng)新能力,建立空間觀念。
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
2學(xué)情分析 新入學(xué)的學(xué)生第一次接觸正規(guī)化的美術(shù)課,對(duì)一年級(jí)學(xué)生來說是新 奇、有趣、好玩的,而且新生入學(xué)前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個(gè)性,但這些會(huì)造成學(xué)習(xí)的不一致性、習(xí)慣不統(tǒng)一化,給 美術(shù)課的課堂帶來不必要的麻煩。因此, 對(duì)待這些剛進(jìn)入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學(xué)生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機(jī)會(huì), 激發(fā)孩子們對(duì)美術(shù)學(xué)習(xí)的興趣,讓孩子們能發(fā) 現(xiàn)美,有創(chuàng)造美的想法。
2學(xué)情分析一年級(jí)學(xué)生對(duì)美術(shù)的興趣很高,對(duì)五顏六色的物體特別感興趣,孩子們課前做的準(zhǔn)備很好。3重點(diǎn)難點(diǎn)1.節(jié)日里煙花的畫法。2.油畫棒和水彩顏料相結(jié)合的涂色技巧。教學(xué)活動(dòng)活動(dòng)1【活動(dòng)】教案第5課五彩的煙花
一、說教材1、教材內(nèi)容分析:本課是人教版1年級(jí)數(shù)學(xué)上冊第五單元的內(nèi)容。10的認(rèn)識(shí)的編排與前面8、9的認(rèn)識(shí)基本相同,先顯示一幅主題圖供學(xué)生數(shù)數(shù)抽象出數(shù)10,再認(rèn)識(shí)10、10以內(nèi)數(shù)的順序,比較相鄰兩個(gè)數(shù)的大小,最后學(xué)習(xí)10的組成和寫數(shù)。10的組成十分重要,它是今后學(xué)習(xí)20以內(nèi)進(jìn)位加法和進(jìn)一步認(rèn)識(shí)100以內(nèi)、萬以內(nèi)以及多位數(shù)的基礎(chǔ)。 2、教學(xué)目標(biāo): (1)引導(dǎo)學(xué)生經(jīng)歷認(rèn)識(shí)10的過程,初步建立10的數(shù)感。 (2)學(xué)會(huì)10的數(shù)數(shù)、認(rèn)數(shù)、讀數(shù)、寫數(shù)、比較大小和組成,對(duì)10的數(shù)概念獲得全面認(rèn)識(shí)和掌握。 (3)引導(dǎo)學(xué)生感受數(shù)10與實(shí)際生活的密切聯(lián)系,培養(yǎng)熱愛祖國、熱愛集體的情感。 3、教學(xué)重點(diǎn): 掌握10的數(shù)概念和10的組成,體驗(yàn)數(shù)學(xué)在身邊。 4、教學(xué)難點(diǎn): 熟練掌握10的組成。 5、教具、學(xué)具準(zhǔn)備: 多媒體課件、學(xué)具袋
反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
(2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).
1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.
2學(xué)情分析 通過本課的學(xué)習(xí),調(diào)動(dòng)和激發(fā)學(xué)生參與學(xué)習(xí)活動(dòng)的熱情,使學(xué)生在游戲活動(dòng)中通過教師的引導(dǎo)及自己動(dòng)手實(shí)踐的親身體驗(yàn),感知泥性并自我解決如何使泥巴聽話,如何玩出新的方法這一問題。同時(shí),在教師的鼓勵(lì)下,使學(xué)生能大膽自由的進(jìn)行造型活動(dòng)并大膽發(fā)表自我感受。3重點(diǎn)難點(diǎn) 1.探索感知泥性,歸納玩泥的幾種方法。2.感受、探索、泥性及口頭表達(dá)。
2學(xué)情分析 一年級(jí)的小朋友比較好動(dòng),撕紙對(duì)于他們來說比用彩筆作畫更加自由、隨意,簡便易行,且更加生動(dòng)、自然,更能體現(xiàn)稚拙、率真的天性,釋放自己。通過大膽的撕紙來表達(dá)心中所想,培養(yǎng)學(xué)生的創(chuàng)造和動(dòng)手能力。3重點(diǎn)難點(diǎn) 重點(diǎn):通過撕紙拼貼的方法表現(xiàn)一種動(dòng)物難點(diǎn):撕的方法
2學(xué)情分析 1、這一課是一年級(jí)的“造型·表現(xiàn)”學(xué)習(xí)領(lǐng)域,一年級(jí)孩子自制力較差,注意力集中時(shí)間不長,缺乏一定的造型能力,但好奇心很強(qiáng),表現(xiàn)欲望非常強(qiáng)烈,非常希望得到老師和同學(xué)們的認(rèn)可,從他們的興趣入手就能達(dá)到事半功倍的效果;2、教學(xué)方式應(yīng)該是直觀的;3、讓學(xué)生通過欣賞與想象進(jìn)行創(chuàng)作,激發(fā)他們對(duì)大自然的興趣,感受大自然的美。
教學(xué)過程:一、組織教學(xué),導(dǎo)入學(xué)習(xí)1.觀察導(dǎo)入,激發(fā)興趣(教具出示)2.教師和學(xué)生一起做猜節(jié)日的游戲,激發(fā)學(xué)生的興趣。 每年的9月10日都是教師們最開心的日子,也是學(xué)生們表達(dá)對(duì)老師尊敬的日子,中國自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會(huì)應(yīng)當(dāng)尊重教師。
教學(xué)目標(biāo) 知識(shí)目標(biāo):通過欣賞大自然的圖片,感知大自然不同特點(diǎn)的美?! 〖寄苣繕?biāo):能用自己喜歡的方式表達(dá)對(duì)不同自然美的感受?! ∏楦袘B(tài)度與價(jià)值觀:培養(yǎng)學(xué)生熱愛大自然的情感,及愛護(hù)大自然的情感?! 〗虒W(xué)重點(diǎn)讓學(xué)生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達(dá)自己的感受?! 〗虒W(xué)難點(diǎn)學(xué)習(xí)用審美的眼光去觀察大自然?! ≈饕谭▎l(fā)引導(dǎo)法、自學(xué)嘗試法 學(xué)習(xí)指導(dǎo)體驗(yàn)探究法輔助指導(dǎo)法 教學(xué)資源教師:教材、課件?! W(xué)生:教材、自然風(fēng)光片 教學(xué)過程: 教學(xué)活動(dòng)教學(xué)意圖 教師學(xué)生
2.過程與方法經(jīng)歷與他人交流算法的過程,能有條理地?cái)⑹鲎约旱乃伎歼^程,能計(jì)算100以內(nèi)數(shù)的連加運(yùn)算。3.情感態(tài)度和價(jià)值觀在計(jì)算過程中初步養(yǎng)成認(rèn)真、細(xì)心、耐心檢查的良好學(xué)習(xí)習(xí)慣?!窘虒W(xué)重點(diǎn)】 會(huì)分析數(shù)量關(guān)系,并計(jì)算100以內(nèi)數(shù)的加法?!窘虒W(xué)難點(diǎn)】 運(yùn)用100以內(nèi)數(shù)的加法解決簡單的實(shí)際問題?!窘虒W(xué)方法】 合作、探究、交流【課前準(zhǔn)備】 多媒體課件【課時(shí)安排】 1課時(shí)【教學(xué)過程】一、創(chuàng)設(shè)情境、引出問題1.出示情境圖:同學(xué)們,你們喜歡套圈游戲嗎?你們看,淘氣和笑笑也來參加好玩的套圈游戲,讓我們一起來看一看。這個(gè)游戲是怎么玩的,你看懂了嗎?從每個(gè)小動(dòng)物前面的得分我們知道離淘氣和笑笑越遠(yuǎn)的小動(dòng)物套中后得分越高。而且機(jī)靈狗告訴我們規(guī)則是“每人投3次,每套中的得0分,總分高的獲勝”。判斷勝負(fù),有時(shí)不光要看勝的場次,還要看什么?分?jǐn)?shù),分高者勝。要引導(dǎo)學(xué)生明白得分是根據(jù)圖中套中的小動(dòng)物得到的。機(jī)靈狗說的是什么意思,誰聽懂了?2.引導(dǎo)學(xué)生有序觀察圖意,并讓學(xué)生看圖說一說:從圖中你知道哪些數(shù)學(xué)信息?
尊敬的各位老師:大家好!我說課的內(nèi)容是九年義務(wù)教育教科書[人教版]一年級(jí)數(shù)學(xué)上冊三單元第七節(jié)《0的認(rèn)識(shí)》。下面我從教材、學(xué)生、教法、學(xué)法、教學(xué)過程、板書、課后反思等幾個(gè)方面談?wù)剬?duì)本節(jié)課的理解和設(shè)計(jì)。 一、說教材 1、教材簡析: 日常生活中經(jīng)常使用0,在不同場合,0往往有不同的意思。對(duì)此,教材有明確的要求。 (1)、著重教學(xué)“一個(gè)也沒有,可以用0表示”。讓學(xué)生在情景中體會(huì)0也是一個(gè)數(shù),它的產(chǎn)生也是計(jì)數(shù)的需要。 (2)、結(jié)合直尺教學(xué)0,0還可以表示起點(diǎn)。 (3)、讓學(xué)生體會(huì)0在生活中的廣泛應(yīng)用。 教材通過猴子吃桃的有趣情境引入,使學(xué)生直觀體會(huì)到什么都沒有可以用“0”來表示。接著利用直尺認(rèn)識(shí)“0”還可以表示起點(diǎn),并使學(xué)生進(jìn)一步熟悉了數(shù)的順序。在學(xué)習(xí)了“0”的書寫后,利用小鳥等動(dòng)物活動(dòng)圖學(xué)習(xí)有關(guān)“0”的加減法,使學(xué)生感受生活中的數(shù)學(xué),快樂學(xué)習(xí)。 2、學(xué)習(xí)目標(biāo): 這節(jié)課我和學(xué)生要達(dá)到的學(xué)習(xí)目標(biāo)是: (1)、通過觀察感知,讓學(xué)生知道0可以表示“沒有”,還可以表示“起點(diǎn)”,并且會(huì)給數(shù)排列順序。