根據(jù)題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結(jié):從扇形統(tǒng)計圖中獲取正確的信息是解題的關(guān)鍵.語文老師對班上學(xué)生的課外閱讀情況做了調(diào)查,并請數(shù)學(xué)老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書籍的人數(shù)比全班的總?cè)藬?shù)即可得各個百分比,所有的百分比之和為1.方法總結(jié):由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.
議一議數(shù)軸上的兩個點,右邊點表示的數(shù)與左邊點表示的數(shù)有怎樣的大小關(guān)系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負數(shù)▁▁▁0,正數(shù)▁▁▁負數(shù)。練習(xí):比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點之間存在怎樣的關(guān)系?(3) 什么是相反數(shù)?怎樣求一個數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大小?5、隨堂練習(xí):(1)下列說法正確的是( ) A、 數(shù)軸上的點只能表示有理數(shù)B、 一個數(shù)只能用數(shù)軸上的一個點表示C、 在1和3之間只有2D、 在數(shù)軸上離原點2個單位長度的點表示的數(shù)是2 (2)語句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說法中正確的是( )
在探究估算方法的時候,教師要注重適時的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會估算的實用價值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評價的一些思考在教學(xué)中要多鼓勵學(xué)生用自己的語言表達他們的想法,在估算的過程中多給予適當?shù)囊龑?dǎo)和評價,讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵探究方式、表達方式和解題方法的多樣化.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗轉(zhuǎn)化與化歸思想,增強學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
一、情境導(dǎo)入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術(shù)平方根的概念【類型一】 求一個數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負數(shù)的算術(shù)平方根,只要找到一個非負數(shù)的平方等于這個非負數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個數(shù)的算術(shù)平方根時,首先要弄清是求哪個數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負數(shù)的算術(shù)平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術(shù)平方根十分有用.
解析:本題是要求兩個未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進3個球的有x人,投進4個球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進3個球的有9人,投進4個球的有3人.方法總結(jié):利用平均數(shù)的公式解題時,要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯.三、板書設(shè)計平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過解決實際問題,體會數(shù)學(xué)與社會生活的密切聯(lián)系,了解數(shù)學(xué)的價值,增進學(xué)生對數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
1.細講概念、強化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學(xué),對提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強訓(xùn)練,逐步深化.“講清概念”就是通過具體實例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當然零的算術(shù)平方根是零.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標確定位置,熟記位置的確定需要橫向與縱向的兩個數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關(guān)位置.三、板書設(shè)計確定位置有序?qū)崝?shù)對方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學(xué)生,進一步豐富學(xué)生的數(shù)學(xué)活動經(jīng)驗,培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機會,促使他們主動參與、積極探究.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強學(xué)習(xí)數(shù)學(xué)的興趣.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯點是對△BED是等腰三角形認識不足,解題的關(guān)鍵是對折疊后的幾何形狀要有一個正確的分析.三、板書設(shè)計矩形矩形的定義:有一個角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個角都是直角兩組對邊分別平行且相等對角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會邏輯推理的思維價值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學(xué)生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
(2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
一、教材分析《加強思想道德建設(shè)》是人教版高中政治必修一《文化生活》第十課第一框題的教學(xué)內(nèi)容。主要學(xué)習(xí)加強思想道德建設(shè)的原因和要求,在前后兩個框題中起到了承上啟下的作用。二、教學(xué)目標1、知識目標識記:社會主義思想道德建設(shè)的主要內(nèi)容。理解:加強社會主義思想道德建設(shè)的主要內(nèi)容必要性和重要性分析:社會主義榮辱觀的特點,以及它和加強社會主義思想道德建設(shè)的內(nèi)在聯(lián)系。 2、能力目標通過對社會主義榮辱觀的特點的學(xué)習(xí),提高學(xué)生多角度認識和分析問題的能力。3、情感、態(tài)度、價值觀目標:通過本課的學(xué)習(xí),提高對加強社會主義思想道德建設(shè)的認識,自覺樹立社會主義榮辱觀,做“明榮知恥”的中學(xué)生。三、教學(xué)重難點教學(xué)重點:為什么要加強思想道德建設(shè)。教學(xué)難點:怎樣加強思想道德建設(shè)。
蘇格拉底把裝有毒酒的杯子舉到胸口,平靜地說:“分手的時候到了,我將死,你們活下來,是誰的選擇好,只有天知道。”說畢,一口喝干了毒酒。(2) 蘇格拉底臨死前對一個叫克力同的人說了這樣一番話??肆ν?,我告訴你,這幾天一直有一個神的聲音在我心中曉喻我,他說:“蘇格拉底,還是聽我們的建議吧,我們是你的衛(wèi)士。不要考慮你的子女、生命或其他東西勝過考慮什么是公正?!聦嵣夏憔鸵x開這里了。當你去死的時候,你是個犧牲品,但不是我們所犯錯誤的犧牲品,而是你同胞所犯錯誤的犧牲品。但你若用這種可恥的方法逃避,以錯還錯,以惡報惡,踐踏你自己和我們訂立的協(xié)議合約,那么你傷害了你最不應(yīng)該傷害的,包括你自己、你的朋友、你的國家,還有我們。到那時,你活著面對我們的憤怒,你死后我們的兄弟、冥府里的法律也不會熱情歡迎你;因為它們知道你試圖盡力摧毀我們。別接受克力同的建議,聽我們的勸告吧?!?/p>
一、說教材(一)教材分析本課所介紹的新文化運動,是繼上一節(jié)所學(xué)的《西學(xué)東漸和維新變法思想》之后中國另一波影響巨大的思想解放潮流,旨在向西方學(xué)習(xí)、尋求強國御侮之道。在整個知識體系中,它既是資產(chǎn)階級領(lǐng)導(dǎo)的舊民主主義革命的補課,又是無產(chǎn)階級領(lǐng)導(dǎo)的新民主主義革命的序曲。它所帶來的思想的空前解放,也就為馬克思主義的傳播創(chuàng)造了條件,為中共的成立奠定基礎(chǔ)。這一課的學(xué)習(xí)能讓學(xué)生清晰認識新文化運動和馬克思主義在近代中國思想解放歷程中的重要作用和巨大影響。與必修一和必修二政治經(jīng)濟史的結(jié)合也能讓使學(xué)生強化歷史聯(lián)系。新課程標準對本課就做了明確的規(guī)定:1、概述新文化運動的主要內(nèi)容,探討其對近代中國思想解放的影響。2、簡述馬克思主義在中國傳播的史實,認識馬克思主義對中國歷史發(fā)展的重大意義。根據(jù)課標要求,我制定了以下具體的三維目標。
②顧炎武也激烈反對君主專制, 主張限制君權(quán),提出亡國與亡天下的區(qū)別,認為,保衛(wèi)一家一姓的國家,是君主及其大臣的事,而保衛(wèi)天下是所有人的事,這段話后來被后人提煉為“天下興亡,匹 夫有責(zé)”,鼓勵人民關(guān)心國家大事。③王夫之認為天下的土地不能被君主一人所有,而應(yīng)當是從事農(nóng)業(yè)的老百姓都有份。2.經(jīng)濟上,重視手工業(yè)、商業(yè)的發(fā)展,強調(diào)經(jīng)世致用。①黃宗羲駁斥輕視工商業(yè)的傳統(tǒng)思想,指出工商業(yè)和農(nóng)業(yè)一樣,都是“民生之本”,應(yīng)該受到保護。②顧炎武、王夫之主張文人多研究一些有關(guān)國計民生的現(xiàn)實問題,反對空談。3.思想上,批判繼承傳統(tǒng)儒學(xué),構(gòu)筑具有時代特色的新思想體系。①黃宗羲批判舊儒學(xué)的“君為臣綱”的思想,繼承先秦儒家的民本思想,提出 “天下為主,君為客”的新思想命題。
【討論】只要繼承和弘揚中國傳統(tǒng)文化中傳統(tǒng)美德,就可以構(gòu)建思想道德體系。學(xué)生展示:法律中道德規(guī)范。老師展示:法治:以法律的權(quán)威性和強制性規(guī)范社會成員的行為(外律)。德治:以道德的說服力和感召力提高社會成員的思想認識和道德覺悟(內(nèi)律)。結(jié)論:既要加強社會主義法制建設(shè),依法治國;也要繼承、發(fā)展、創(chuàng)新傳統(tǒng)美德,加強思想道德建設(shè),以德治國。建立社會主義思想道德體系要與法律法規(guī)相協(xié)調(diào)。設(shè)計意圖:設(shè)計一個條件型辨析探究題開展討論,把建設(shè)思想道德與優(yōu)秀傳統(tǒng)文竹也、法治的關(guān)系結(jié)合起來,把課堂探究與課前探究結(jié)合起來,有利于提高學(xué)生的思維能力和課堂教學(xué)效率。踐行:思想道德建設(shè)從我做起你是否認同、選擇下列行為?展示校園現(xiàn)象圖片《作弊》與《小煙民》(略);展示中學(xué)生在家中表現(xiàn)的漫畫《老子、兒子和孫子》(略);
由此引導(dǎo)學(xué)生的深思,學(xué)生通過合作探究,幫助學(xué)生認識到不注重思想道德修養(yǎng),即使掌握了豐富的科學(xué)知識,也難以避免人格上的缺失,甚至危害社會。進而總結(jié)出關(guān)系二:加強思想道德修養(yǎng),能夠促進科學(xué)文化修養(yǎng)??茖W(xué)文化修養(yǎng)的意義播放感動中國人物徐本禹先進事跡短片。學(xué)生觀看完視頻后,思考:從徐本禹的事跡中,我們可以了解到我們加強科學(xué)文化修養(yǎng)的根本意義是什么?引導(dǎo)學(xué)生結(jié)合自身體會,發(fā)表各自見解,在此基礎(chǔ)上幫助學(xué)生總結(jié)出,要使自己的思想道德境界不斷升華,為人民服務(wù)的本領(lǐng)不斷提高,成為一個真正有知識文化涵養(yǎng)的人,成為一個脫離低級趣味的人、有益于人民的人。知識點三:追求更高的思想道德目標根據(jù)教材110探究活動(思想道德的差異、反應(yīng)人們世界觀、人生觀、價值觀的差異)思考:用公民的基本道德規(guī)范來衡量這些觀點,你贊成哪些觀點?反對哪些觀點?小組進行合作探究,引導(dǎo)學(xué)生根據(jù)公民基本道德規(guī)范對這些價值觀進行評析。
1.做學(xué)問之前首先學(xué)會做人2.知識文化修養(yǎng)和思想道德修養(yǎng)的關(guān)系三.追求更高的思想道德目標㈤ 說教學(xué)評價和反思:1.這節(jié)課主要是以學(xué)生為主體,老師為主導(dǎo),讓學(xué)生充分發(fā)表自己的看法,把理論的知識結(jié)合在實際的日常生活中,鼓勵學(xué)生充分發(fā)表自己的意見,能調(diào)動學(xué)生學(xué)習(xí)的積極性,達到教學(xué)目的。這節(jié)課學(xué)生討論,發(fā)言的機會很多,但由于我校的學(xué)生的基礎(chǔ)薄弱,在發(fā)言時難免偏離老師引導(dǎo)的方向,甚至出現(xiàn)毫不相干的說法,由于本人經(jīng)驗不夠此時如何去引導(dǎo)他們可能做的還不夠好。2.新課程的教學(xué),如何突破書本知識的局限,延伸更深層次的內(nèi)容是一個難題。本節(jié)課在知識的處理上,把道德的重要性與道德的層次兩個知識點補充了進去,目的是讓學(xué)生在學(xué)習(xí)之前有一個情感的鋪墊,從而更好地達到教學(xué)目標。