提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

  • 人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(jì)(1)

    四、小結(jié)1.知識:如何采用兩角和或差的正余弦公式進(jìn)行合角,借助三角函數(shù)的相關(guān)性質(zhì)求值.其中三角函數(shù)最值問題是對三角函數(shù)的概念、圖像和性質(zhì),以及誘導(dǎo)公式、同角三角函數(shù)基本關(guān)系、和(差)角公式的綜合應(yīng)用,也是函數(shù)思想的具體體現(xiàn). 如何科學(xué)的把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,如何選擇自變量建立數(shù)學(xué)關(guān)系式;求解三角函數(shù)在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關(guān)系式 化成 的形式,可以很好地培養(yǎng)學(xué)生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數(shù)學(xué)關(guān)系式,可以很好地培養(yǎng)學(xué)生分析問題、解決問題的能力和應(yīng)用意識,進(jìn)一步培養(yǎng)學(xué)生的建模意識.五、作業(yè)1. 課時練 2. 預(yù)習(xí)下節(jié)課內(nèi)容學(xué)生根據(jù)課堂學(xué)習(xí),自主總結(jié)知識要點(diǎn),及運(yùn)用的思想方法。注意總結(jié)自己在學(xué)習(xí)中的易錯點(diǎn);

  • 人教A版高中數(shù)學(xué)必修二簡單隨機(jī)抽樣教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二簡單隨機(jī)抽樣教學(xué)設(shè)計(jì)

    知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標(biāo)的全體作為總體,每一個調(diào)查對象的相應(yīng)指標(biāo)作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財(cái)力、物力,因而不宜經(jīng)常進(jìn)行。為了及時掌握全國人口變動狀況,我國每年還會進(jìn)行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進(jìn)行調(diào)查,并以此為依據(jù)對總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.

  • 人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正切函數(shù)的圖像與性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一簡單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進(jìn)行求值、化簡、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會三角恒等變換的基本思想方法,以及進(jìn)行簡單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡、求值以及證明,進(jìn)而進(jìn)行簡單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.

  • 人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3超幾何分布教學(xué)設(shè)計(jì)

    探究新知問題1:已知100件產(chǎn)品中有8件次品,現(xiàn)從中采用有放回方式隨機(jī)抽取4件.設(shè)抽取的4件產(chǎn)品中次品數(shù)為X,求隨機(jī)變量X的分布列.(1):采用有放回抽樣,隨機(jī)變量X服從二項(xiàng)分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結(jié)果相互獨(dú)立,此時X服從二項(xiàng)分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產(chǎn)品中次品數(shù)X服從二項(xiàng)分布嗎?若不服從,那么X的分布列是什么?不服從,根據(jù)古典概型求X的分布列.解:從100件產(chǎn)品中任取4件有 C_100^4 種不同的取法,從100件產(chǎn)品中任取4件,次品數(shù)X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設(shè)一批產(chǎn)品共有N件,其中有M件次品.從N件產(chǎn)品中隨機(jī)抽取n件(不放回),用X表示抽取的n件產(chǎn)品中的次品數(shù),則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機(jī)變量X服從超幾何分布.

  • 人教A版高中數(shù)學(xué)必修二古典概型和概率的基本性質(zhì)教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二古典概型和概率的基本性質(zhì)教學(xué)設(shè)計(jì)

    新知講授(一)——古典概型 對隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個;2、等可能性:每個樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個;因?yàn)槭请S機(jī)選取的,所以選到每個學(xué)生的可能性都相等,因此這是一個古典概型。

  • 人教A版高中數(shù)學(xué)必修一對數(shù)的運(yùn)算教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一對數(shù)的運(yùn)算教學(xué)設(shè)計(jì)(1)

    本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對數(shù)的運(yùn)算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運(yùn)算性質(zhì),理解它的關(guān)鍵就是通過實(shí)例使學(xué)生認(rèn)識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實(shí)例推導(dǎo)對數(shù)的運(yùn)算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點(diǎn)的關(guān)鍵是抓住對數(shù)的概念、并讓學(xué)生掌握對數(shù)式與指數(shù)式的互化;通過實(shí)例推導(dǎo)對數(shù)的運(yùn)算性質(zhì),讓學(xué)生準(zhǔn)確地運(yùn)用對數(shù)運(yùn)算性質(zhì)進(jìn)行運(yùn)算,學(xué)會運(yùn)用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運(yùn)算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進(jìn)行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運(yùn)用于有關(guān)對數(shù)計(jì)算。

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    1.對稱性與首末兩端“等距離”的兩個二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教A版高中數(shù)學(xué)必修一奇偶性教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一奇偶性教學(xué)設(shè)計(jì)(2)

    《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用奇偶性解決實(shí)際問題。重點(diǎn):函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點(diǎn):函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。

  • 人教A版高中數(shù)學(xué)必修一對數(shù)的運(yùn)算教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一對數(shù)的運(yùn)算教學(xué)設(shè)計(jì)(2)

    學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運(yùn)算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運(yùn)算性質(zhì),推導(dǎo)對數(shù)的運(yùn)算性質(zhì),再學(xué)習(xí)利用對數(shù)的運(yùn)算性質(zhì)化簡求值。課程目標(biāo)1、通過具體實(shí)例引入,推導(dǎo)對數(shù)的運(yùn)算性質(zhì);2、熟練掌握對數(shù)的運(yùn)算性質(zhì),學(xué)會化簡,計(jì)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的運(yùn)算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運(yùn)算:對數(shù)運(yùn)算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實(shí)際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點(diǎn):對數(shù)的運(yùn)算性質(zhì),換底公式,對數(shù)恒等式及其應(yīng)用;難點(diǎn):正確使用對數(shù)的運(yùn)算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.

  • 人教A版高中數(shù)學(xué)必修一對數(shù)的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一對數(shù)的概念教學(xué)設(shè)計(jì)(2)

    對數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納對數(shù)的概念,通過對數(shù)的性質(zhì)和恒等式解決一些與對數(shù)有關(guān)的問題.課程目標(biāo)1、理解對數(shù)的概念以及對數(shù)的基本性質(zhì);2、掌握對數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的概念;2.邏輯推理:推導(dǎo)對數(shù)性質(zhì);3.數(shù)學(xué)運(yùn)算:用對數(shù)的基本性質(zhì)與對數(shù)恒等式求值;4.數(shù)學(xué)建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì).重點(diǎn):對數(shù)式與指數(shù)式的互化以及對數(shù)性質(zhì);難點(diǎn):推導(dǎo)對數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達(dá)到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實(shí)際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號y=f(x)的理解。

  • 人教A版高中數(shù)學(xué)必修一集合的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一集合的概念教學(xué)設(shè)計(jì)(2)

    例7 用描述法表示拋物線y=x2+1上的點(diǎn)構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點(diǎn)構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點(diǎn)的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實(shí)數(shù).變式2.[變條件,變設(shè)問]本題中點(diǎn)的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實(shí)數(shù).解題技巧(認(rèn)識集合含義的2個步驟)一看代表元素,是數(shù)集還是點(diǎn)集,二看元素滿足什么條件即有什么公共特性。

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負(fù)角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運(yùn)動變化的觀點(diǎn),并由此進(jìn)一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實(shí)際問題,如時針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負(fù)角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負(fù)角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運(yùn)算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;

  • 人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(1)

    一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點(diǎn) 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點(diǎn)對稱思考2: 已知任意角α的終邊與單位圓相交于點(diǎn)P(x, y),請同學(xué)們思考回答點(diǎn)P關(guān)于原點(diǎn)、x軸、y軸對稱的三個點(diǎn)的坐標(biāo)是什么?【答案】點(diǎn)P(x, y)關(guān)于原點(diǎn)對稱點(diǎn)P1(-x, -y)點(diǎn)P(x, y)關(guān)于x軸對稱點(diǎn)P2(x, -y) 點(diǎn)P(x, y)關(guān)于y軸對稱點(diǎn)P3(-x, y)

  • 人教A版高中數(shù)學(xué)必修一基本不等式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一基本不等式教學(xué)設(shè)計(jì)(2)

    《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點(diǎn)有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運(yùn)算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實(shí)際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實(shí)際問題,提升學(xué)生的邏輯推理能力。重點(diǎn):基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點(diǎn):基本不等式的推導(dǎo)以及證明過程.

  • 人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一任意角教學(xué)設(shè)計(jì)(2)

    學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對角的定義是:射線OA繞端點(diǎn)O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.

  • 人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一誘導(dǎo)公式教學(xué)設(shè)計(jì)(2)

    本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。

  • 【高教版】中職數(shù)學(xué)拓展模塊:2.3《拋物線》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:2.3《拋物線》教學(xué)設(shè)計(jì)

    一、教學(xué)目標(biāo)(一)知識教育點(diǎn)使學(xué)生掌握拋物線的定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.(二)能力訓(xùn)練點(diǎn)要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.(三)學(xué)科滲透點(diǎn)通過一個簡單實(shí)驗(yàn)引入拋物線的定義,可以對學(xué)生進(jìn)行理論來源于實(shí)踐的辯證唯物主義思想教育.二、教材分析1.重點(diǎn):拋物線的定義和標(biāo)準(zhǔn)方程.2.難點(diǎn):拋物線的標(biāo)準(zhǔn)方程的推導(dǎo).三、活動設(shè)計(jì)提問、回顧、實(shí)驗(yàn)、講解、板演、歸納表格.四、教學(xué)過程(一)導(dǎo)出課題我們已學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線.今天我們將學(xué)習(xí)第四種圓錐曲線——拋物線,以及它的定義和標(biāo)準(zhǔn)方程.課題是“拋物線及其標(biāo)準(zhǔn)方程”.首先,利用籃球和排球的運(yùn)動軌跡給出拋物線的實(shí)際意義,再利用太陽灶和拋物線型的橋說明拋物線的實(shí)際用途。

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!