教學(xué)媒體設(shè)計(jì)充分利用多媒體教學(xué),將powerpoint、《幾何畫板》兩種軟件結(jié)合起來(lái)制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動(dòng)畫性,更加形象的反映出作圖的過(guò)程,增加數(shù)學(xué)的美感,激發(fā)學(xué)生作圖的興趣。教學(xué)評(píng)價(jià)設(shè)計(jì)本節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應(yīng)用,畫出了標(biāo)準(zhǔn)、動(dòng)畫形式的二次函數(shù)的圖像,讓抽象思維不強(qiáng)的學(xué)生,更加形象的結(jié)合圖形,分析說(shuō)出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點(diǎn),攻破難點(diǎn),我要求學(xué)生“先觀察后思考”、“先做后說(shuō)”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過(guò)程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。本節(jié)課,讓學(xué)生有觀察,有思考,有討論,有練習(xí),充分調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準(zhǔn)備。
1、圓的半徑是 ,假設(shè)半徑增加 時(shí),圓的面積增加 。(1)寫出 與 之間的關(guān)系表達(dá)式;(2)當(dāng)圓的半徑分別增加 , , 時(shí),圓的面積增加多少。【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。2、籬笆墻長(zhǎng) ,靠墻圍成一個(gè)矩形花壇,寫出花壇面積 與長(zhǎng) 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍?!驹O(shè)計(jì)意圖】此題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習(xí)第1題,習(xí)題2.1第1題;
設(shè)計(jì)說(shuō)明:設(shè)計(jì)這組測(cè)驗(yàn)為了反饋學(xué)生學(xué)習(xí)情況,第1題較簡(jiǎn)單,也是為了讓提高學(xué)生學(xué)習(xí)士氣,體會(huì)到成功的快樂(lè);第2題稍微有點(diǎn)挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學(xué)生的不同需求.教師可們采用搶答方式調(diào)動(dòng)學(xué)生積極性,學(xué)生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評(píng)價(jià).環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過(guò)4個(gè)(或4個(gè)以上的)點(diǎn)是不是一定能作圓?2.作業(yè):A層 課本118頁(yè)習(xí)題A組1,2,3; B層 習(xí)題B組.設(shè)計(jì)說(shuō)明:設(shè)計(jì)第1題的原因保證了知識(shí)的完整性,學(xué)生在探究完三個(gè)點(diǎn)作圓以后,肯定有一個(gè)思維延續(xù),不在同一直線上三個(gè)點(diǎn)確定一個(gè)圓,四個(gè)點(diǎn)又會(huì)怎樣?四個(gè)點(diǎn)又分共線和不共線兩種情況,不共線的四點(diǎn)作圓問(wèn)題又能用三點(diǎn)確定一個(gè)圓去解釋,本題既應(yīng)用了新學(xué)知識(shí),又給學(xué)生提供了更廣泛地思考空間.第2題,主要是讓學(xué)生進(jìn)一步鞏固新學(xué)知識(shí),規(guī)范解題步驟. 在作業(yè)設(shè)計(jì)時(shí),既面向全體學(xué)生,又尊重學(xué)生的個(gè)體差異,以掌握知識(shí)形成能力為主要目的.
(設(shè)計(jì)意圖:因?yàn)閳A中有關(guān)的點(diǎn)、線、角及其他圖形位置關(guān)系的復(fù)雜,學(xué)生往往因?qū)σ阎獥l件的分析不夠全面,忽視某個(gè)條件,某種特殊情況,導(dǎo)致漏解。采用小組討論交流的方式進(jìn)行要及時(shí)進(jìn)行小組評(píng)價(jià)。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設(shè)計(jì)意圖:通過(guò)練習(xí),使學(xué)生能靈活運(yùn)用圓周角定理進(jìn)行幾何題的證明,規(guī)范步驟,提高利用定理解決問(wèn)題的能力。)(三)說(shuō)小結(jié)首先,通過(guò)學(xué)生小組交流,談一談你有什么收獲。(提示學(xué)生從三方面入手:1、學(xué)到了知識(shí);2、掌握了哪些數(shù)學(xué)方法;3、體會(huì)到了哪些數(shù)學(xué)思想。)然后,教師引導(dǎo)小組間評(píng)價(jià)。使學(xué)生對(duì)本節(jié)內(nèi)容有一個(gè)更系統(tǒng)、深刻的認(rèn)識(shí),實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。(四)、板書設(shè)計(jì)為了集中濃縮和概括本課的教學(xué)內(nèi)容,使教學(xué)重點(diǎn)醒目、突出、合理有序,以便學(xué)生對(duì)本課知識(shí)點(diǎn)有了完整清晰的印象。我只選擇了本節(jié)課的兩個(gè)知識(shí)點(diǎn)作為板書。
6、問(wèn)題的檢驗(yàn)學(xué)生提出的問(wèn)題和老師拓展的問(wèn)題在解答過(guò)程中,學(xué)生能否真正領(lǐng)會(huì),或領(lǐng)會(huì)的程度如何?這就需要檢驗(yàn)才能了解。檢驗(yàn)的方式很多,可以通過(guò)交流、調(diào)查、反思、隨堂檢測(cè)等方式進(jìn)行。我主要采用隨堂檢測(cè)的方式,把事先準(zhǔn)備好的自測(cè)題發(fā)給學(xué)生,或利用多媒體投影來(lái)進(jìn)行當(dāng)堂檢測(cè)。檢測(cè)題目不宜過(guò)多,可隨學(xué)生的課堂表現(xiàn)而有所增減,同時(shí),把拓展性的問(wèn)題作為思考題留給學(xué)生課外探索。如,這節(jié)課我是選擇了《同步作業(yè)》中的幾個(gè)具有代表性的問(wèn)題來(lái)完成檢驗(yàn)的。安排這一環(huán)節(jié)的意圖:通過(guò)把教學(xué)內(nèi)容以問(wèn)題的形式列出來(lái),用于檢驗(yàn)學(xué)生對(duì)知識(shí)點(diǎn)的掌握和教師教學(xué)效果的了解,幫助教師及時(shí)掌控課堂教學(xué)情況,調(diào)整教學(xué)思路和教學(xué)進(jìn)度。7、我的收獲和疑惑課程結(jié)束時(shí),讓學(xué)生談?wù)勛约旱氖斋@以及還有哪些問(wèn)題沒能搞明白。安排這一環(huán)節(jié)的意圖:這一環(huán)節(jié)可以促使學(xué)生對(duì)本節(jié)課的內(nèi)容進(jìn)行主動(dòng)的、深層次的的回顧與反思,從而加深學(xué)生對(duì)所學(xué)知識(shí)的整理、記憶與理解,同時(shí)也便于老師對(duì)課堂教學(xué)效果的及時(shí)掌握和調(diào)整以后的教學(xué)思路。
設(shè)計(jì)意圖這一組習(xí)題的設(shè)計(jì),讓每位學(xué)生都參與,通過(guò)學(xué)生的主動(dòng)參與,讓每一位學(xué)生有“用武之地”,深刻體會(huì)本節(jié)課的重要內(nèi)容和思想方法,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動(dòng))引導(dǎo)學(xué)生進(jìn)行課堂小結(jié),給出下列提綱,并就學(xué)生回答進(jìn)行點(diǎn)評(píng)。(1)通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)會(huì)了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問(wèn)題?(學(xué)生活動(dòng))學(xué)生發(fā)言,互相補(bǔ)充。(教師活動(dòng))布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實(shí)踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計(jì)意圖通過(guò)讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實(shí)際,對(duì)課后的書面作業(yè)分為三個(gè)層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時(shí),在知識(shí)拓展時(shí)起激學(xué)生探究的熱情,讓每一個(gè)不同層次的學(xué)生都可以獲得成功的喜悅。
通過(guò)與學(xué)生講解切線長(zhǎng)定義,讓學(xué)生在參與、合作中有一個(gè)猜想,再進(jìn)一步提出更有挑戰(zhàn)性的問(wèn)題,能否用數(shù)學(xué)的方法加以證明。問(wèn)題的解決,使學(xué)生既能解決新的問(wèn)題,同時(shí)應(yīng)用到全等、切線的性質(zhì)等知識(shí),同時(shí)三條輔助線中,兩條運(yùn)用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語(yǔ)言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過(guò)前面的學(xué)習(xí)學(xué)生們已經(jīng)對(duì)切線長(zhǎng)定理有了較深刻的了解。為了加深學(xué)生對(duì)定理的認(rèn)識(shí)并培養(yǎng)學(xué)生的應(yīng)用意識(shí)學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨(dú)立完成,加深對(duì)切線長(zhǎng)定理的理解,老師進(jìn)行點(diǎn)評(píng),對(duì)于例2,由師生共同分析完成,交進(jìn)行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個(gè)層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識(shí)體系中,使學(xué)生的知識(shí)體系得到補(bǔ)充和完善。(5) 歸納與小結(jié)通過(guò)小結(jié),使知識(shí)成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識(shí)。
教學(xué)過(guò)程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設(shè)計(jì) (一)、新課引入教師提問(wèn):一個(gè)直角三角形中,一個(gè)銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計(jì)意圖】回顧上節(jié)課所學(xué)的內(nèi)容,便于后面教學(xué)的開展。 (二)、探究新知活動(dòng)一、探索特殊角的三角函數(shù),并填寫課本表格[問(wèn)題] 1、觀察一副三角尺,其中有幾個(gè)銳角?它們分別等于多少度? [問(wèn)題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問(wèn)題] 3、cos30°等于多少?tan30°呢? [問(wèn)題] 4、我們求出了30°角的三個(gè)三角函數(shù)值,還有兩個(gè)特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
本節(jié)課的設(shè)計(jì)是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅(jiān)持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動(dòng)性。教學(xué)過(guò)程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗(yàn)知識(shí)的產(chǎn)生過(guò)程,拓展學(xué)生的創(chuàng)造性思維。同時(shí),注意加強(qiáng)對(duì)學(xué)生的啟發(fā)和引導(dǎo),鼓勵(lì)培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。2、學(xué)法研究“贈(zèng)人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的知識(shí),首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識(shí)入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運(yùn)用舊知識(shí)的鑰匙去打開新知識(shí)的大門,進(jìn)入新知識(shí)的領(lǐng)域,從不同角度去分析、解決新問(wèn)題,通過(guò)基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
第一道例題提示學(xué)生把地基看成一個(gè)幾何圖形,即正六邊形,逐步引導(dǎo)學(xué)生完成例題的解答。例題1:有一個(gè)亭子它的地基是半徑為4米的正六邊形,求地基的周長(zhǎng)和面積(精確到0.1平方米)。第二道例題,我讓學(xué)生獨(dú)立完成,我在下面巡視,個(gè)別輔導(dǎo),同時(shí)我將關(guān)注不同層次學(xué)生對(duì)本節(jié)知識(shí)的理解、掌握程度,及時(shí)調(diào)整教學(xué)。最后,引導(dǎo)學(xué)生總結(jié)這一類問(wèn)題的求解方法。這兩道例題旨在將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,將多邊形化歸成三角形來(lái)解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學(xué)完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。
教學(xué)目標(biāo):1.會(huì)畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過(guò) 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來(lái)的三種視圖畫出來(lái),并與同伴交流。比較:小亮畫出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫的對(duì)不對(duì)?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
三、課堂檢測(cè):(一)、判斷題(是一無(wú)二次方程的在括號(hào)內(nèi)劃“√”,不是一元二次方程的,在括號(hào)內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項(xiàng)是__________,一次項(xiàng)是__________,常數(shù)項(xiàng)是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程,當(dāng)m__________時(shí),是一元一次方程。四、學(xué)習(xí)體會(huì):五、課后作業(yè)
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實(shí)驗(yàn)次數(shù)的不斷增加,頻率的變化趨勢(shì)如何?結(jié)論:從上面的試驗(yàn)可以看到:當(dāng)重復(fù)實(shí)驗(yàn)的次數(shù)大量增加時(shí),事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過(guò)大量重復(fù)實(shí)驗(yàn),用一個(gè)事件發(fā)生的頻率來(lái)估計(jì)這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動(dòng)員投籃5次, 投中4次,能否說(shuō)該運(yùn)動(dòng)員投一次籃,投中的概率為4/5?為什么?2.回答下列問(wèn)題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計(jì)抽1件襯衣合格的概率是多少?(2)1998年,在美國(guó)密歇根州漢諾城市的一個(gè)農(nóng)場(chǎng)里出生了1頭白色的小奶牛,據(jù)統(tǒng)計(jì),平均出生1千萬(wàn)頭牛才會(huì)有1頭是白色的,由此估計(jì)出生一頭奶牛為白色的概率為多少?
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
如圖,四邊形OABC是邊長(zhǎng)為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過(guò)點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長(zhǎng)為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號(hào).三、板書設(shè)計(jì)反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時(shí),在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時(shí),在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過(guò)對(duì)反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語(yǔ)言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
補(bǔ)充題:為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥熏消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問(wèn)題:(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過(guò)______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時(shí)間為12分鐘,大于10分鐘的有效消毒時(shí)間.
(1)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近(精確到0.1);(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會(huì)接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過(guò)實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動(dòng)過(guò)程,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力.通過(guò)動(dòng)手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.