教學(xué)反思: 1.本課時設(shè)計的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對數(shù)與形有一個初步的認識.為將來的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學(xué)生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識的同時,交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點不容忽視,在日常的教學(xué)中要時時注意.2.學(xué)生在小學(xué)時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學(xué)生對圓規(guī)的用法有一個新的認識.3.在課堂練習(xí)中安排了度量一些三角形的邊的長度,目的是想通過度量使學(xué)生對“兩點之間線段最短”這一結(jié)論有一個感性的認識,并為下面的教學(xué)做一個鋪墊.
教學(xué)目標1、知識目標:掌握等式的性質(zhì);會運用等式的性質(zhì)解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標:通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動的意識和情感,敢于面對數(shù)學(xué)活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學(xué)重點與難點重點:理解和應(yīng)用等式的性質(zhì)。難點:應(yīng)用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學(xué)時數(shù) 2課時(本節(jié)課是第一課時)教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護花草樹木是我們每個人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.
方法總結(jié):對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計教學(xué)過程中,強調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動,感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴密性.
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法.
三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關(guān)鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對應(yīng)線段的長度.三、板書設(shè)計投影的概念與中心投影投影的概念:物體在光線的照射下,會 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關(guān)系的活動中,體會立體圖形與平面圖形的相互轉(zhuǎn)化關(guān)系,發(fā)展學(xué)生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學(xué)生觀察問題、分析問題的能力.
五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當小華筆直地往前走時,他在這盞路燈下的影子也隨之向前移動.小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習(xí)題5.1八、板書設(shè)計投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個話題,接著經(jīng)歷實踐、探索的過程,掌握了中心投影的含義,進一步根據(jù)燈光光線的特點,由實物與影子來確定路燈的位置,能畫出在同一時刻另一物體的影子,還要求大家不僅要自己動手實踐,還要和同伴互相交流.同時要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實踐操作能力,合作交流能力,語言表達能力.
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應(yīng)進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個數(shù)成比例,則應(yīng)滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.
2、發(fā)展幼兒思維的邏輯判斷能力。活動準備:1、創(chuàng)設(shè)超市小貨架的環(huán)境。2、動物及其食品小圖片、房子圖、筆等?;顒舆^程:(一) 通過游戲“為小動物買禮物”理解序數(shù)。(序數(shù)可以從不同的方向數(shù),從不同的方向數(shù)得出的結(jié)論會不同)1、自由探索:(1)引導(dǎo)幼兒以“到動物食品超市為小動物買禮物”的游戲形式到“超市”購物。 (要求記住在什么顏色的貨架上買到貨物的)(2)請個別幼兒告訴大家在什么顏色的格子里買到貨物,并請其他幼兒猜一猜他是在第幾個格格子里買到的東西。
2、學(xué)習(xí)與同伴友好交往、合作游戲的方法。3、培養(yǎng)幼兒的動手操作能力、遷移能力和逆向思維?;顒訙蕚洌?1—10數(shù)字一套;錄音帶、錄音機;幼兒學(xué)具: 1—10的紙牌?;顒宇A(yù)設(shè):1、游戲《拍手問答》復(fù)習(xí)5以內(nèi)的相鄰數(shù)。教師邊拍手邊問,幼兒邊拍手邊回答。如教師問:小朋友,我問你,3的朋友是幾和幾?幼兒回答:x老師,告訴你,3的朋友是2和4。(可請個別或集體回答)2、游戲《認鄰居》:請若干幼兒自選樓房居住,并認識自己的鄰居。學(xué)習(xí)6的相鄰數(shù)。知道其與前后數(shù)的關(guān)系。3、游戲:紙牌樂,兩個幼兒為一組。游戲開始,把1—10的紙牌放在桌面上,兩個幼兒猜“剪刀石頭布”,贏幼兒先取一張紙牌,輸?shù)挠變赫页鏊南噜彅?shù)。游戲再次進行,教師巡回指導(dǎo)。
活動準備: 1、房子6幢。 2、動物照片拼圖每組一盒 3、1---6的數(shù)卡人手一份。 活動過程: 一、找房子 1、師:花園里,有許多漂亮的房子,我?guī)銈內(nèi)タ匆豢?。(出示教具)?shù)一下,這里共有幾幢房子?(6幢,幼兒口手一致點數(shù)) 2、師:這些房子都是小動物住的,它們告訴我,每幢房子的門里面都有一個數(shù)字,讓我們來猜一猜,是什么數(shù)? a、紅房子里是個比2大1的數(shù),那是幾?(3)猜出后請幼兒找出數(shù)字,放在板上,驗證。 b、綠房子里是1、2、3、4、5、6里面最小的一個數(shù),那是幾?(1)方法同上 c、咖啡色房子里是排在4后面的一個數(shù),它是幾?(5) d、藍房子里的數(shù)是1、2、3、4、5、6里面最大的一個數(shù),那是幾?(6)方法同上 e、1到6這些數(shù)里面,還有哪兩個數(shù)沒有猜過?(4和2)紫色房子里的數(shù)比黃房子大,想一想,它該是數(shù)字幾?(4) f、剩下黃房子里的數(shù)又是幾???(2)
2、理解交換規(guī)律,懂得運用互換規(guī)律列出另一道算式。3、積極探索數(shù)學(xué)活動,樂于講述探索結(jié)果?;顒訙蕚洌?、教具:城堡圖一副(分為三層,每一層分別有表示7的加法的三副圖,用紙覆蓋)、水果單一張。2、學(xué)具:城堡圖人手一份、水果單人手一張?;顒又攸c:看圖學(xué)習(xí)7的加法活動難點:能根據(jù)不同的畫面進行講述,并列出相應(yīng)的算式活動過程:一、開火車:復(fù)習(xí)7的組成師:城堡王國的國王邀請我們?nèi)ニ膰彝?,你們愿意嗎?那讓我們快點乘上7次列車(出示數(shù)字7)出發(fā)吧。師:嘿嘿,我的火車X(1)點開,你的火車X 點開?幼:嘿嘿,我的火車X(1)點開,我的火車X(6)點開。
活動準備: 提供三種顏色不同的瓶蓋個三個,每人一套1—4的數(shù)字卡片?;顒舆^程:1、 分別取三種顏色不同的瓶蓋個三個,一一對應(yīng)排成三橫排,中間一排的瓶蓋不動,讓三排瓶蓋變得一排比一排多一個,討論如何才能做到。2、 找出相應(yīng)的數(shù)字卡片擺在瓶蓋的左邊,討論:比3少1的數(shù)是幾,應(yīng)排在哪里;比3多1的數(shù)是幾,應(yīng)該排在哪里。
2、發(fā)展幼兒思維的邏輯判斷能力。3、愿意參加游戲活動,體驗游戲的樂趣?;顒訙蕚洌?、學(xué)具:小旗人手一套。2、教具:大數(shù)卡一套、房子五座、小旗一面、五種小動物活動過程: 一、用第幾座的形式表示不同顏色的房子分別在第幾座1、出示房子提問:他們分別是什么顏色?(紅、黃、藍、綠、紫)一共有幾座?紅房子在第幾座?你是從哪邊開始數(shù)的?有不一樣的嗎?2、出示小旗提問:現(xiàn)在,我們從哪邊開始數(shù)?3、做門牌卡:紅房子在第一座,用數(shù)字幾表示?(請幼兒找數(shù)字貼在房頂上)
活動目標:1、通過一系列的游戲活動,讓幼兒認識序數(shù)第一至第五。2、發(fā)展幼兒思維的邏輯判斷能力?;顒訙蕚洌簲?shù)字卡片、小旗人手一套、房子(紅、黃、藍、綠、紫)、小動物圖片、高樓一棟、記錄表活動流程:找房子→舉小旗→動物找家→幼兒操作活動過程:一、讓幼兒學(xué)會用第幾座的形式來表示不同顏色的房子分別在第幾座。 1、師:好消息,好消息!森林小區(qū)要搬遷啦!小動物們請我們?nèi)兔Γ覀兛斐霭l(fā)吧!看,森林里有許多不同顏色的小房子,它們分別是什么顏色?(紅、藍、紫、綠、黃)一共有幾座?(5座)你是怎么數(shù)的?(幼兒自由發(fā)揮/從左往右)2、師:紅房子在第幾座?3、幼兒回答:第1間。