提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人音版小學(xué)音樂(lè)一年級(jí)上龍咚鏘說(shuō)課稿

  • 人教部編版七年級(jí)下冊(cè)木蘭詩(shī)教案

    人教部編版七年級(jí)下冊(cè)木蘭詩(shī)教案

    本教學(xué)設(shè)計(jì)著眼于民歌特點(diǎn)。第1課時(shí)重在誦讀詩(shī)歌,設(shè)計(jì)不同層次的讀,引導(dǎo)學(xué)生從詩(shī)歌的形式、節(jié)奏、韻律、情感四個(gè)方面感受民歌形式自由、具有韻律美、節(jié)奏感強(qiáng)、情感富于變化的特點(diǎn),從而體會(huì)民歌的情味。第2課時(shí)重在品讀詩(shī)歌,引導(dǎo)學(xué)生通過(guò)品析情節(jié)、品味語(yǔ)言、析讀主題等方式,體會(huì)詩(shī)歌語(yǔ)言剛健明朗而質(zhì)樸生動(dòng)的特點(diǎn),逐層解讀民歌所塑造的傳奇形象,并理解民歌所傳達(dá)的愛(ài)國(guó)情懷。素養(yǎng)提升互 文互文,也叫互辭,是古詩(shī)文中常用的一種修辭手法。古文中對(duì)它的解釋是:“參互成文,合而見(jiàn)義?!本唧w地說(shuō),它是這樣一種表現(xiàn)形式:上下兩句或一句話中的兩個(gè)部分,看似各說(shuō)兩件事,實(shí)則是互相呼應(yīng),互相闡發(fā),互相補(bǔ)充,說(shuō)的是一件事。即上下文義互相交錯(cuò)、互相滲透、互相補(bǔ)充地來(lái)表達(dá)一個(gè)完整的意思。初中階段,常見(jiàn)的互文一般有三類:(1)單句互文單句互文,即在同一個(gè)句子中前后兩個(gè)詞語(yǔ)在意義上相互交錯(cuò)、滲透、補(bǔ)充。如:秦時(shí)明月漢時(shí)關(guān)。

  • 初中數(shù)學(xué)人教版二元一次方程組教學(xué)設(shè)計(jì)教案

    初中數(shù)學(xué)人教版二元一次方程組教學(xué)設(shè)計(jì)教案

    (一)例題引入籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝1場(chǎng)得2分,負(fù)1場(chǎng)得1分。某隊(duì)在10場(chǎng)比賽中得到16分,那么這個(gè)隊(duì)勝負(fù)場(chǎng)數(shù)分別是多少?方法一:(利用之前的知識(shí),學(xué)生自己列出并求解)解:設(shè)剩X場(chǎng),則負(fù)(10-X)場(chǎng)。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學(xué)生一起列出方程組)解:設(shè)勝X場(chǎng),負(fù)Y場(chǎng)。根據(jù):勝的場(chǎng)數(shù)+負(fù)的場(chǎng)數(shù)=總場(chǎng)數(shù) 勝場(chǎng)積分+負(fù)場(chǎng)積分=總積分得到:X+Y=10 2X+Y=16

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    傾斜角與斜率教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時(shí)實(shí)數(shù)m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結(jié)果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計(jì)算方法(1)判斷兩點(diǎn)的橫坐標(biāo)是否相等,若相等,則直線的斜率不存在.(2)若兩點(diǎn)的橫坐標(biāo)不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進(jìn)行計(jì)算.金題典例 光線從點(diǎn)A(2,1)射到y(tǒng)軸上的點(diǎn)Q,經(jīng)y軸反射后過(guò)點(diǎn)B(4,3),試求點(diǎn)Q的坐標(biāo)及入射光線的斜率.解:(方法1)設(shè)Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點(diǎn)Q的坐標(biāo)為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設(shè)Q(0,y),如圖,點(diǎn)B(4,3)關(guān)于y軸的對(duì)稱點(diǎn)為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點(diǎn)共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點(diǎn)Q的坐標(biāo)為(0,5/3).

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    空間向量基本定理教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過(guò)渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長(zhǎng)方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    1.確定研究對(duì)象,明確哪個(gè)是解釋變量,哪個(gè)是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過(guò)變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲(chóng)的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測(cè)數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說(shuō)明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測(cè)溫度為35℃時(shí)該種藥用昆蟲(chóng)的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 人教版新課標(biāo)高中地理必修2第一章第三節(jié)人口合理容量教案

    人教版新課標(biāo)高中地理必修2第一章第三節(jié)人口合理容量教案

    生:環(huán)境承載力是指環(huán)境能持續(xù)供養(yǎng)的人口數(shù)量。師:對(duì)了。但是有同學(xué)仍然會(huì)感到這是一個(gè)很抽象的概念。下面我們具體來(lái)了解什么是環(huán)境承載力。我們可以從兩個(gè)部分去理解:一、環(huán)境,它主要是指環(huán)境的單個(gè)要素(如:土地、水、氣候、植被等。)及其組合方式。二、是承載力,它指在特定的條件下,具體某事物能承受的某種活動(dòng)的最大值。那環(huán)境承載力的科學(xué)定義是怎樣表達(dá)的呢?生:環(huán)境承載力是指某一時(shí)期,某種狀態(tài)條件下,某地區(qū)環(huán)境所能承受的人類活動(dòng)作用的閾值。師:很對(duì)。 我們可以用一個(gè)生動(dòng)的例子來(lái)說(shuō)明。一只木桶里面的水的多少在底面積固定不變的情況下是由哪塊木板來(lái)決定?生:最短的那塊。師:確實(shí)如此。這就是我們平常所講的 “木桶效應(yīng)”。那影響環(huán)境承載力的大小也是由環(huán)境個(gè)要素里面最緊缺的那個(gè)要素來(lái)決定的。下面我們用一個(gè)例子來(lái)印證一下。

  • 人教版新課標(biāo)高中地理必修2第一章第二節(jié)人口的空間變化教案

    人教版新課標(biāo)高中地理必修2第一章第二節(jié)人口的空間變化教案

    1.促使美國(guó)成為一個(gè)移民國(guó)家的因素是:①美洲屬于未開(kāi)發(fā)的新大陸,需要大量的勞動(dòng)力;②歐洲失業(yè)工人和破產(chǎn)農(nóng)民增加,人們?yōu)榱俗非蟾玫慕?jīng)濟(jì)待遇遷往美洲;③新航線的開(kāi)辟為人們順利遷移掃除了障礙;④殖民擴(kuò)張是人口遷移的促進(jìn)因素,加快了人口遷移的過(guò)程。導(dǎo)致美國(guó)人口在本土范圍內(nèi)頻繁遷移的原因,歸納起來(lái)有:第一次人口遷移是戰(zhàn)爭(zhēng)因素,第二次是城市化;第三次是自然環(huán)境、經(jīng)濟(jì)環(huán)境的變化;第四次是經(jīng)濟(jì)格局的變化,即西部和南部新資源的發(fā)現(xiàn)和新興工業(yè)的發(fā)展。2.我國(guó)古代的人口遷移,深受統(tǒng)治者及其行政力量的束縛。封建帝王為了加強(qiáng)本國(guó)的經(jīng)濟(jì)和軍事實(shí)力,對(duì)人口遷移嚴(yán)加控制。只有當(dāng)戰(zhàn)亂發(fā)生的時(shí)候,這種控制才得到削弱,人們?yōu)榱硕惚軕?zhàn)亂,尋找安定的生活環(huán)境,不得不進(jìn)行大規(guī)模的遷移。我國(guó)近幾十年的人口遷移主要是由生產(chǎn)資料和勞動(dòng)力數(shù)量上的地區(qū)分布不平衡造成的,是經(jīng)濟(jì)因素在起主導(dǎo)作用,與古代的人口遷移截然不同。

  • 第22個(gè)“全國(guó)中小學(xué)安全教育日”國(guó)旗下講話稿:珍愛(ài)生命,安全第一

    第22個(gè)“全國(guó)中小學(xué)安全教育日”國(guó)旗下講話稿:珍愛(ài)生命,安全第一

    尊敬的各位老師,親愛(ài)的同學(xué)們:大家上午好!三月,是春風(fēng)和煦、萬(wàn)木吐綠的美好季節(jié),俗話說(shuō):“一年之際在于春?!比藗儼言S多紀(jì)念日都放在了三月,如:3月5日“學(xué)習(xí)雷鋒”紀(jì)念日,3月8日國(guó)際勞動(dòng)?jì)D女節(jié),3月12日植樹(shù)節(jié),3月15日國(guó)際消費(fèi)者權(quán)益日。今天我講的是大家可能還不太熟悉的一個(gè)紀(jì)念日:那就是“全國(guó)中小學(xué)安全宣傳教育日”。1996年由國(guó)家教委等有關(guān)部門(mén)規(guī)定,每年三月最后的一個(gè)星期一被定為“全國(guó)中小學(xué)安全教育日”。今天是第22個(gè)“全國(guó)中小學(xué)安全教育日”。我今天國(guó)旗下講話的題目是:《珍愛(ài)生命,安全第一》。當(dāng)我們隨著一聲清脆的啼哭聲降落到人間,這就標(biāo)志著又給人世間增添了一份寶貴的財(cái)富。因此我們要懂得在人生的路上走好每一步,處處小心,時(shí)時(shí)提防,保持警惕的頭腦,繃緊安全之弦。事事處處想到“安全”二字。學(xué)校高度重視校園安全工作,采取了多種加強(qiáng)校園安全的措施。對(duì)同學(xué)們多次進(jìn)行交通安全、運(yùn)動(dòng)安全、食品安全、用電用氣安全、防火安全等教育,以提高我們的安全意識(shí),提高我們自我保護(hù)的能力。但是,還有一些同學(xué)視安全隱患而不顧,如課間在走廊里打鬧;上下樓梯時(shí)互相擁擠

  • 第二十一個(gè)全國(guó)中小學(xué)生安全教育日校長(zhǎng)國(guó)旗下講話稿

    第二十一個(gè)全國(guó)中小學(xué)生安全教育日校長(zhǎng)國(guó)旗下講話稿

    老師、同學(xué)們:早上好!今天是第21個(gè)全國(guó)中小學(xué)生安全教育日,今年中小學(xué)學(xué)生安全教育日主題是“強(qiáng)化安全意識(shí),提升安全素養(yǎng)”,我們學(xué)校把這一周定為安全教育周,主題是生命教育。學(xué)校根據(jù)這一主題將開(kāi)展一系列的活動(dòng),各個(gè)班級(jí)要開(kāi)好一個(gè)生命教育的主題班會(huì),出好一期黑板報(bào),同學(xué)們要閱讀一本或一篇有關(guān)生命教育的書(shū)籍或資料;進(jìn)一步認(rèn)識(shí)生命,樹(shù)立正確的生命觀,欣賞生命、尊重生命、敬畏生命,直至熱愛(ài)生命,以達(dá)到激發(fā)生命的潛能,提升生命的品質(zhì),捍衛(wèi)生命的尊嚴(yán);感受生命的美好,喚起生命的熱情,體認(rèn)生命的意義,實(shí)現(xiàn)生命的價(jià)值;學(xué)會(huì)對(duì)他人生命的尊重、關(guān)懷和欣賞,樹(shù)立積極的人生觀。同學(xué)們,生命最大的特征是“生生不息”,我們的生命源于父母,對(duì)父母要有感恩之情、思念之情、親愛(ài)之情。“仁者愛(ài)人”,要從與自己最親近的人愛(ài)起,擴(kuò)展到愛(ài)他人,愛(ài)社會(huì),愛(ài)萬(wàn)物。要明白生命之成長(zhǎng)必扎根于社會(huì)文明、文化與傳統(tǒng)的土壤中,與他人、與過(guò)去現(xiàn)在未來(lái)之一切人的生命相依相系。

  • 黑龍江省龍東地區(qū)2017年中考?xì)v史真題試題(含答案)

    黑龍江省龍東地區(qū)2017年中考?xì)v史真題試題(含答案)

    24、科技創(chuàng)新是一個(gè)民族發(fā)展的靈魂,是一個(gè)民族進(jìn)步的不竭動(dòng)力。結(jié)合所學(xué)知識(shí),回答下列問(wèn)題。(6分)(1)世界上現(xiàn)存最早的、標(biāo)有確切日期的雕版印刷品是什么?(1分)(2)北宋時(shí),哪一項(xiàng)發(fā)明為航海事業(yè)的發(fā)展做出了貢獻(xiàn)?(1分)(3)被稱為“中國(guó)17世紀(jì)的工藝百科全書(shū)”的是哪部作品?(1分)(4)《本草綱目》是一部具有總結(jié)性的藥物學(xué)巨著,西方國(guó)家稱它為“東方醫(yī)學(xué)巨典”。 作者是誰(shuí)?(1分)(5)近代中國(guó)人自行設(shè)計(jì)和施工的第一條鐵路干線是什么?(1分)(6)揭開(kāi)制堿奧秘,使我國(guó)制堿技術(shù)躍居世界前列的著名化學(xué)家是誰(shuí)?(1分)

  • 黑龍江省龍東地區(qū)2017年中考?xì)v史真題試題(含解析)

    黑龍江省龍東地區(qū)2017年中考?xì)v史真題試題(含解析)

    21.根據(jù)提示寫(xiě)出相應(yīng)的歷史人物。(4分)(1)改革開(kāi)放和社會(huì)主義現(xiàn)代化建設(shè)的總設(shè)計(jì)師是________________(2)提出“相對(duì)論”,打開(kāi)原子時(shí)代大門(mén)的科學(xué)家是___________________(3)領(lǐng)導(dǎo)俄國(guó)人民取得十月革命的勝利,建立了笫一個(gè)社會(huì)主義國(guó)家的是________________ (4)面對(duì)1929-1933年經(jīng)濟(jì)危機(jī),實(shí)施“新政”的美國(guó)總統(tǒng)是________________

上一頁(yè)123...266267268269270271272273274275276277下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專注素材下載!