提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

初中語文《陳太丘與友期行》試講稿_教案設(shè)計(jì)

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項(xiàng)和公式(2)教學(xué)設(shè)計(jì)

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個報(bào)告廳,要求容納800個座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計(jì)

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量及其分布列(2)教學(xué)設(shè)計(jì)

    溫故知新 1.離散型隨機(jī)變量的定義可能取值為有限個或可以一一列舉的隨機(jī)變量,我們稱為離散型隨機(jī)變量.通常用大寫英文字母表示隨機(jī)變量,例如X,Y,Z;用小寫英文字母表示隨機(jī)變量的取值,例如x,y,z.隨機(jī)變量的特點(diǎn): 試驗(yàn)之前可以判斷其可能出現(xiàn)的所有值,在試驗(yàn)之前不可能確定取何值;可以用數(shù)字表示2、隨機(jī)變量的分類①離散型隨機(jī)變量:X的取值可一、一列出;②連續(xù)型隨機(jī)變量:X可以取某個區(qū)間內(nèi)的一切值隨機(jī)變量將隨機(jī)事件的結(jié)果數(shù)量化.3、古典概型:①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點(diǎn)數(shù)X有哪些值?取每個值的概率是多少? 因?yàn)閄取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式系數(shù)的性質(zhì)教學(xué)設(shè)計(jì)

    1.對稱性與首末兩端“等距離”的兩個二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3一元線性回歸模型及其應(yīng)用教學(xué)設(shè)計(jì)

    1.確定研究對象,明確哪個是解釋變量,哪個是響應(yīng)變量;2.由經(jīng)驗(yàn)確定非線性經(jīng)驗(yàn)回歸方程的模型;3.通過變換,將非線性經(jīng)驗(yàn)回歸模型轉(zhuǎn)化為線性經(jīng)驗(yàn)回歸模型;4.按照公式計(jì)算經(jīng)驗(yàn)回歸方程中的參數(shù),得到經(jīng)驗(yàn)回歸方程;5.消去新元,得到非線性經(jīng)驗(yàn)回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓(xùn)練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計(jì)算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關(guān)于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關(guān)于x回歸方程為 且相關(guān)指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預(yù)測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:3.3《函數(shù)的實(shí)際應(yīng)用舉例》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:3.3《函數(shù)的實(shí)際應(yīng)用舉例》教學(xué)設(shè)計(jì)

    課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實(shí)際生活中常見問題,結(jié)合中專學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時,形成一種意識,即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時深化學(xué)生對函數(shù)概念的理解和認(rèn)識,也為接下來學(xué)習(xí)指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問題入手,求得分段函數(shù)此部分知識以學(xué)生生活常識為背景,可以引導(dǎo)學(xué)生分析得出。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.5《柱、錐、球及其簡單組合體》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:9.5《柱、錐、球及其簡單組合體》教學(xué)設(shè)計(jì)

    課題序號 授課班級 授課課時2授課形式 教學(xué)方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學(xué)目的1、使學(xué)生認(rèn)識柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述生活中簡單物體的結(jié)構(gòu)。 2、讓學(xué)生了解柱、錐、球的側(cè)面積和體積的計(jì)算公式。 3、培養(yǎng)學(xué)生觀察能力、計(jì)算能力。

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計(jì)

    新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二變化率問題教學(xué)設(shè)計(jì)

    導(dǎo)語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進(jìn)一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運(yùn)動員的速度高臺跳水運(yùn)動中,運(yùn)動員在運(yùn)動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關(guān)系h(t)=-4.9t2+4.8t+11.如何描述用運(yùn)動員從起跳到入水的過程中運(yùn)動的快慢程度呢?直覺告訴我們,運(yùn)動員從起跳到入水的過程中,在上升階段運(yùn)動的越來越慢,在下降階段運(yùn)動的越來越快,我們可以把整個運(yùn)動時間段分成許多小段,用運(yùn)動員在每段時間內(nèi)的平均速度v ?近似的描述它的運(yùn)動狀態(tài)。

  • 人教版高中數(shù)學(xué)選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學(xué)設(shè)計(jì)

    由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗(yàn)線性相關(guān)顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點(diǎn)圖,判斷成對樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢的異同.

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計(jì)

    新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式   (1) 教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項(xiàng)和公式 (1) 教學(xué)設(shè)計(jì)

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請?jiān)谄灞P的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實(shí)現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的概念(2)教學(xué)設(shè)計(jì)

    二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進(jìn)價值的5%,設(shè)備將報(bào)廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計(jì)

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點(diǎn)時,直線方程為y=-34x.②直線不過原點(diǎn)時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3離散型隨機(jī)變量的均值教學(xué)設(shè)計(jì)

    對于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問題中,有時我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機(jī)變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運(yùn)動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 幼兒園中班語言說課稿:我想幫忙(附教案)

    幼兒園中班語言說課稿:我想幫忙(附教案)

    本次活動我設(shè)計(jì)以下三個環(huán)節(jié):一、展示《我想幫忙》課件,引導(dǎo)幼兒看圖說話,并認(rèn)讀詞語:幫忙。二、引導(dǎo)幼兒情境講述,進(jìn)一步理解畫面內(nèi)容。三、嘗試表演,感受和體驗(yàn)河馬助人為樂的情感。一、展示《我想幫忙》課件,引導(dǎo)幼兒看圖說話,并認(rèn)讀詞語:幫忙。1、談話導(dǎo)入:(教師神秘地說)告訴大家一個秘密:老師發(fā)現(xiàn)了一群小動物們之間的故事,你們想知道嗎?可是,小動物們說了要想知道它們的秘密必須靠小朋友自己,要用自己的小眼睛認(rèn)真觀察,動腦筋思考,還要大膽回答出問題才行呢!大家能做到嗎?就讓我們一起來試試吧!(出示幻燈一)引導(dǎo)幼兒說說畫面中的小動物們都在干什么。(出示幻燈二)猜猜“河馬會怎么幫忙呢?”(這樣的設(shè)計(jì)就是抓住幼兒喜歡小動物的心理,利用幼兒觀察小動物們生活化的動作形態(tài)和解答懸疑問題,激發(fā)幼兒的學(xué)習(xí)興趣。)2、(出示幻燈三——六)在展示畫面的過程中,引導(dǎo)幼兒認(rèn)真觀察,鼓勵幼兒大膽、清楚地表達(dá)自己的想法和感受,發(fā)展幼兒的語言表達(dá)能力和思維能力,并使幼兒養(yǎng)成注意傾聽的好習(xí)慣。3、認(rèn)讀詞語:幫忙。利用字卡和情境畫面幫助幼兒直觀形象地去了解、認(rèn)識詞語,再通過游戲《幫字寶寶找朋友》進(jìn)一步加深理解詞語。

  • 幼兒園中班語言說課稿:我想幫忙(附教案)

    幼兒園中班語言說課稿:我想幫忙(附教案)

    二、說活動目標(biāo):《綱要》中提出:“創(chuàng)造一個自由、寬松的語言交往環(huán)境,支持、鼓勵、吸引幼兒與教師、同伴或其他人交談,體驗(yàn)語言交流的樂趣?!备鶕?jù)這一要求,我從認(rèn)知、能力、情感三方面提出了本次活動的目標(biāo)。1、能看懂畫面的主要內(nèi)容,并嘗試講述畫面中的故事。(體現(xiàn)在教學(xué)環(huán)節(jié)一)2、能用完整的話說出河馬幫助了誰?怎么幫的?(體現(xiàn)在教學(xué)環(huán)節(jié)二)3、幫助幼兒感受與體驗(yàn)河馬助人為樂的情感。(體現(xiàn)在教學(xué)環(huán)節(jié)三)三、說活動重、難點(diǎn):現(xiàn)在的幼兒通常生活在成人的“保護(hù)圈”里,與人交往的能力較差,自我意識強(qiáng),缺乏友愛、助人為樂的意識,我把“幫助幼兒感受和體驗(yàn)河馬助人為樂的情感?!倍楸敬位顒拥囊粋€重點(diǎn)。為了培養(yǎng)幼兒養(yǎng)成說完整話的習(xí)慣,根據(jù)本次活動的目標(biāo),又把“能看懂畫面的主要內(nèi)容,并嘗試用完整的話說出河馬幫助了誰及所用的方法?!弊鰹楸敬位顒拥闹攸c(diǎn)也是難點(diǎn)。

  • 小學(xué)美術(shù)人教版四年級下冊《第8課我畫的動漫形象3》教學(xué)設(shè)計(jì)說課稿

    小學(xué)美術(shù)人教版四年級下冊《第8課我畫的動漫形象3》教學(xué)設(shè)計(jì)說課稿

    2學(xué)情分析本課屬于“造型.表現(xiàn)”,學(xué)習(xí)領(lǐng)域。可愛幽默的動漫形象滲透了具象的造型知識,培養(yǎng)了學(xué)生的創(chuàng)新精神,豐富著孩子們的美好童年回憶。本課介紹了幾種不同表現(xiàn)形式的動漫形象。聯(lián)系生活原型與動漫形象,告訴學(xué)生動漫形像來源于現(xiàn)實(shí)生活,并通過文字和示范講述動漫行象的造型手法(擬人化、變形、夸張等),引導(dǎo)學(xué)生大膽繪制簡單的動漫形象。3 重難點(diǎn)1、教學(xué)重點(diǎn):讓學(xué)生了解動漫的風(fēng)格,主要的設(shè)計(jì)手法,激發(fā)學(xué)生豐富的想象力,繪制出幽默、夸張、富有童趣的動漫形象。2、教學(xué)難點(diǎn):讓學(xué)生運(yùn)用擬人、夸張、添加、變形、寫實(shí)等方法,畫出動漫形象

上一頁123...9899100101102103104105106107108109下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動畫,PPT模板免費(fèi)下載,專注素材下載!