提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教部編版道德與法制三年級上冊我學(xué)習(xí)我快樂說課稿

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)1教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)1教案

    (2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

  • 北師大初中九年級數(shù)學(xué)下冊圓教案

    北師大初中九年級數(shù)學(xué)下冊圓教案

    解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請你判斷到C城后還能接收到信號嗎?請說明理由.

  • 二年級數(shù)學(xué)下冊第七單元萬以內(nèi)數(shù)的認(rèn)識(shí)教案

    二年級數(shù)學(xué)下冊第七單元萬以內(nèi)數(shù)的認(rèn)識(shí)教案

    一、復(fù)習(xí)導(dǎo)入1、口答:最大的一位數(shù)是幾?最小的兩位數(shù)是多少?這兩個(gè)數(shù)相差多少?2、數(shù)數(shù):10個(gè)10個(gè)地?cái)?shù),從10數(shù)到100; 1個(gè)1個(gè)地?cái)?shù),從91數(shù)到99; 問:99加1是多少?3、導(dǎo)入:你會(huì)從100開始接著往后數(shù)嗎?今天開始我們將要學(xué)習(xí)更大的數(shù),下面請你們觀察這幅圖。二、講授新課1、出示主題圖。(1)觀察這幅圖,說一說畫面上正在發(fā)生什么事情?(2)看著畫面你想知道什么問題?引導(dǎo)學(xué)生估算畫面上的體育館大約能坐多少人?2、板書課題:1000以內(nèi)數(shù)的認(rèn)識(shí)。3、教學(xué)例1。(1)數(shù)一數(shù)。每人數(shù)出10個(gè)小方塊,說說你是怎么數(shù)的?板書:一個(gè)一個(gè)地?cái)?shù),10個(gè)一是十。

  • 二年級數(shù)學(xué)下冊第五單元混合運(yùn)算教案

    二年級數(shù)學(xué)下冊第五單元混合運(yùn)算教案

    一、創(chuàng)設(shè)情境,導(dǎo)入新課   1、老師有一個(gè)好消息要告訴大家,在動(dòng)物學(xué)校的旁邊開了一家超市,森林里的小動(dòng)物們都去那兒購物。今天,小熊哥倆正在商店里購物呢!你想看看嗎?   2、教師出示情境圖,教師板書課題:小熊購物二、自主探究新知   1、解決第(1)個(gè)問題“小熊該付多少錢?”   1)“仔細(xì)觀察情境圖,你能發(fā)現(xiàn)哪些數(shù)學(xué)信息?”,教師總結(jié)重要數(shù)學(xué)信息?! ?2)“ 大家看小熊說的話,你能提出什么問題?” 引出“小熊該付多少錢?”這個(gè)問題?! ?3),教師巡視搜集學(xué)生出現(xiàn)的不同做法   4)展示學(xué)生作業(yè),并引導(dǎo)其他學(xué)生質(zhì)疑“第二個(gè)算式是什么意思?”若學(xué)生中不出現(xiàn)第二個(gè)算式,教師引導(dǎo)學(xué)生將兩個(gè)算式合在一起。   5)脫式計(jì)算:根據(jù)學(xué)生列出的算式,教師結(jié)合算式指導(dǎo)學(xué)生進(jìn)行脫式計(jì)算,規(guī)范學(xué)生的書寫格式。

  • 二年級數(shù)學(xué)下冊第八單元克和千克教案

    二年級數(shù)學(xué)下冊第八單元克和千克教案

    1、拿出一本數(shù)學(xué)教課書,和一只筆,提問:哪個(gè)重有些?2、肯定學(xué)生的回答,并讓學(xué)生“掂一掂”,然后讓學(xué)生說說有什么樣的感覺。3、從剛才的實(shí)踐得出結(jié)論:物體有輕有重。板書課題。二、觀察、操作領(lǐng)悟新知1、出示主題掛圖,物體的輕重的計(jì)量。觀察主題掛圖。(1、)請同學(xué)們觀察一下,這幅圖畫的是什么?(2、)這幅圖中的小朋友和阿姨在說什么?(3、)前幾天,老師讓大家廣泛收集、調(diào)查我們?nèi)粘I钪谐R娢锲返馁|(zhì)量,我們現(xiàn)在來交流以下好嗎?表示物品有多重,可以用克和千克單位來表示。(4、)在學(xué)生說的同時(shí),老師拿出有準(zhǔn)備的東西展示。

  • 北師大初中七年級數(shù)學(xué)下冊頻率的穩(wěn)定性教案

    北師大初中七年級數(shù)學(xué)下冊頻率的穩(wěn)定性教案

    解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會(huì)呈現(xiàn)穩(wěn)定性,即頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng).隨著試驗(yàn)次數(shù)的增加,擺動(dòng)的幅度有越來越小的趨勢.2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會(huì)穩(wěn)定到某一個(gè)常數(shù)p,于是,我們用p這個(gè)常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對比頻率與概率的區(qū)別,體會(huì)到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系

  • 北師大初中七年級數(shù)學(xué)下冊曲線型圖象教案

    北師大初中七年級數(shù)學(xué)下冊曲線型圖象教案

    解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對應(yīng)的x值,即15時(shí),A對;溫度最低應(yīng)找到圖象的最低點(diǎn)所對應(yīng)的x值,即3時(shí),B對;這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對.故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對應(yīng)值.三、板書設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來,完成對該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的

  • 北師大初中七年級數(shù)學(xué)下冊用尺規(guī)作角教案

    北師大初中七年級數(shù)學(xué)下冊用尺規(guī)作角教案

    解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識(shí),課堂教學(xué)內(nèi)容以學(xué)生動(dòng)手操作為主,在學(xué)生動(dòng)手操作的過程中要鼓勵(lì)學(xué)生大膽動(dòng)手,培養(yǎng)學(xué)生的動(dòng)手能力和書面語言表達(dá)能力

  • 北師大初中七年級數(shù)學(xué)下冊軸對稱現(xiàn)象教案

    北師大初中七年級數(shù)學(xué)下冊軸對稱現(xiàn)象教案

    方法總結(jié):判斷軸對稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經(jīng)過翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對稱的概念展開想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對稱圖形的定義2.對稱軸3.兩個(gè)圖形成軸對稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)

  • 北師大初中八年級數(shù)學(xué)下冊不等式的解集教案

    北師大初中八年級數(shù)學(xué)下冊不等式的解集教案

    【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計(jì)1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會(huì)到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵(lì)學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.

  • 北師大初中八年級數(shù)學(xué)下冊角平分線教案

    北師大初中八年級數(shù)學(xué)下冊角平分線教案

    解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì)定理角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的判定定理在一個(gè)角的內(nèi)部,到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練.

  • 北師大初中八年級數(shù)學(xué)下冊平方差公式教案

    北師大初中八年級數(shù)學(xué)下冊平方差公式教案

    答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計(jì)1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項(xiàng)式必須是二項(xiàng)式,兩項(xiàng)都能寫成平方的形式,且符號相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通??紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡,二是分解因式時(shí),每個(gè)因式都要分解徹底.

  • 北師大初中八年級數(shù)學(xué)下冊中心對稱教案

    北師大初中八年級數(shù)學(xué)下冊中心對稱教案

    探究點(diǎn)三:作中心對稱圖形如圖,網(wǎng)格中有一個(gè)四邊形和兩個(gè)三角形.(1)請你畫出三個(gè)圖形關(guān)于點(diǎn)O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個(gè)整體圖形,請寫出這個(gè)整體圖形對稱軸的條數(shù);這個(gè)整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個(gè)整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設(shè)計(jì)1.中心對稱如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱或中心對稱.2.中心對稱圖形把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形.教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會(huì)識(shí)別中心對稱圖形的方法,理解中心對稱圖形的特征.

  • 北師大初中八年級數(shù)學(xué)下冊平移的認(rèn)識(shí)教案

    北師大初中八年級數(shù)學(xué)下冊平移的認(rèn)識(shí)教案

    方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);④按原圖形順序依次連接對應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.

  • 北師大初中八年級數(shù)學(xué)下冊旋轉(zhuǎn)作圖教案

    北師大初中八年級數(shù)學(xué)下冊旋轉(zhuǎn)作圖教案

    解析:整個(gè)陰影部分比較復(fù)雜和分散,像此類問題通常使用割補(bǔ)法來計(jì)算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使整個(gè)陰影部分割補(bǔ)成半個(gè)正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個(gè)面積可以計(jì)算的規(guī)則圖形.三、板書設(shè)計(jì)1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動(dòng)手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.

  • 北師大初中九年級數(shù)學(xué)下冊垂徑定理教案

    北師大初中九年級數(shù)學(xué)下冊垂徑定理教案

    方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來解決問題,我們一定要把知識(shí)融會(huì)貫通,在解決問題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長,此時(shí)OP為半徑的長;當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.

  • 北師大初中九年級數(shù)學(xué)下冊二次函數(shù)2教案

    北師大初中九年級數(shù)學(xué)下冊二次函數(shù)2教案

    4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

  • 北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    北師大初中九年級數(shù)學(xué)下冊切線長定理教案

    (3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級數(shù)學(xué)下冊圓的對稱性教案

    北師大初中九年級數(shù)學(xué)下冊圓的對稱性教案

    我們知道圓是一個(gè)旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).

  • 小學(xué)音樂教案

    小學(xué)音樂教案

    1、使學(xué)生了解學(xué)習(xí)本單元的意義,歌頌愛心,培育愛心?! ?、能自主學(xué)唱歌曲并設(shè)計(jì)歌曲的演唱情緒,力度等;合唱時(shí)聲部和諧、聲音優(yōu)美。  3、能注意歌曲中段落的劃分,并通過歌聲表達(dá)出來?!  窘虒W(xué)過程】  導(dǎo)入  1987 年的中央電視臺(tái)春節(jié)聯(lián)歡晚會(huì)上來了兩位客人,一位是善良的家庭女主人,一位是身患白血病的小保姆,姑娘在女主人和鄰里的關(guān)懷、幫助下戰(zhàn)勝了病魔,他們共同述說著這一動(dòng)人的故事,隨即《愛的奉獻(xiàn)》歌聲響起,感動(dòng)了在場的觀眾和所有的電視觀眾,歌曲中的"只要你獻(xiàn)出一點(diǎn)愛,世界將變成美好的人間"早已唱遍了了全國。

上一頁123...281282283284285286287288289290291292下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!