提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版新課標(biāo)高中物理必修2經(jīng)典力學(xué)的局限性教案2篇

  • 人教版高中地理必修2第四章第一節(jié)工業(yè)的區(qū)位因素與區(qū)位選擇說(shuō)課稿

    人教版高中地理必修2第四章第一節(jié)工業(yè)的區(qū)位因素與區(qū)位選擇說(shuō)課稿

    在這段教學(xué)中可以插入世界主要鐵礦、煤礦,以及我國(guó)主要的礦產(chǎn)基地、鋼鐵生產(chǎn)基地的相關(guān)內(nèi)容,不失為區(qū)域地理知識(shí)的很好補(bǔ)充和鞏固。那么從現(xiàn)狀來(lái)看我國(guó)的鋼鐵產(chǎn)業(yè)基地多數(shù)污染較為嚴(yán)重,可見(jiàn)工業(yè)區(qū)位的選擇同樣要顧及到環(huán)境的因素,由此引入下一部分的內(nèi)容。除了傳統(tǒng)意義上的工業(yè)區(qū)位因素外,環(huán)境、政策以及決策者的理念和心理等日益受到人們的關(guān)注。在這段文字的處理上,只需進(jìn)行概念、道理上的陳述即可,重點(diǎn)要放在污染工業(yè)在城市中的布局這一知識(shí)點(diǎn)上。首先要了解什么工業(yè)會(huì)造成怎樣的污染,然后根據(jù)污染的類(lèi)別分別講解不同的應(yīng)對(duì)方略,最后將配以適當(dāng)?shù)睦}以期提高學(xué)生的整體把握程度和綜合運(yùn)用能力。最后將對(duì)本節(jié)內(nèi)容進(jìn)行小結(jié),要在小結(jié)中闡述清楚本節(jié)課的兩大內(nèi)容:即工業(yè)的區(qū)位因素和工業(yè)區(qū)位的選擇。然后點(diǎn)明本節(jié)課的主要知識(shí)點(diǎn)、難點(diǎn)、重點(diǎn)。在時(shí)間允許的情況下可以適當(dāng)安排幾道有關(guān)主導(dǎo)產(chǎn)業(yè)和城市工業(yè)布局的例題加以練習(xí)。

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線(xiàn)是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿(mǎn)足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線(xiàn)方程是 . 解析:兩圓的方程相減得公共弦所在的直線(xiàn)方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線(xiàn)l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線(xiàn)的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線(xiàn)的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線(xiàn)方程知直線(xiàn)斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線(xiàn)l1過(guò)點(diǎn)P(2,1)且與直線(xiàn)l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線(xiàn)l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線(xiàn)y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線(xiàn)y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線(xiàn)l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線(xiàn)y=3x+3的傾斜角的2倍,求直線(xiàn)l的點(diǎn)斜式方程.【答案】直線(xiàn)y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線(xiàn)l的傾斜角為120°.以直線(xiàn)l的斜率為k′=tan 120°=-3.所以直線(xiàn)l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線(xiàn)的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線(xiàn)的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過(guò)原點(diǎn)時(shí),直線(xiàn)方程為y=-34x.②直線(xiàn)不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線(xiàn)方程為x+y-1=0.所以這樣的直線(xiàn)有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線(xiàn)上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線(xiàn)方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線(xiàn)AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線(xiàn)ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線(xiàn)在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線(xiàn)與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線(xiàn)的方程;(2)求AC邊上的垂直平分線(xiàn)的方程.解析(1)直線(xiàn)AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線(xiàn)BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線(xiàn)AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線(xiàn)段AC的中點(diǎn)為D(-4,2),直線(xiàn)AC的斜率為12,則AC邊上的垂直平分線(xiàn)的斜率為-2,所以AC邊的垂直平分線(xiàn)的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 點(diǎn)到直線(xiàn)的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線(xiàn)的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線(xiàn)方程的兩點(diǎn)式得直線(xiàn)BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線(xiàn)l的距離相等,求直線(xiàn)l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線(xiàn)l的斜率存在,設(shè)為k.又直線(xiàn)l在y軸上的截距為2,則直線(xiàn)l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線(xiàn)l的距離相等,∴直線(xiàn)l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線(xiàn)l過(guò)線(xiàn)段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線(xiàn)l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線(xiàn)l過(guò)點(diǎn)P(0,2),∴直線(xiàn)l的方程是x-y+2=0.當(dāng)直線(xiàn)l∥AB時(shí),A,B兩點(diǎn)到直線(xiàn)l的距離相等.∵直線(xiàn)AB的斜率為0,∴直線(xiàn)l的斜率為0,∴直線(xiàn)l的方程為y=2.綜上所述,滿(mǎn)足條件的直線(xiàn)l的方程是x-y+2=0或y=2.

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶(hù)的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫(xiě)成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線(xiàn)P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線(xiàn)P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 兩條平行線(xiàn)間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線(xiàn)間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線(xiàn)的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線(xiàn)間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線(xiàn)的距離 B.點(diǎn)到直線(xiàn)的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線(xiàn)l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線(xiàn)間距離的含義,在直線(xiàn)l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線(xiàn)l_2的距離就是直線(xiàn)l_1與直線(xiàn)l_2間的距離,這樣求兩條平行線(xiàn)間的距離就轉(zhuǎn)化為求點(diǎn)到直線(xiàn)的距離。兩條平行直線(xiàn)間的距離1. 定義:夾在兩平行線(xiàn)間的__________的長(zhǎng).公垂線(xiàn)段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線(xiàn)的距離.1.原點(diǎn)到直線(xiàn)x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 直線(xiàn)與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線(xiàn)與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線(xiàn)方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線(xiàn)方程:先求切點(diǎn)與圓心連線(xiàn)的斜率k,則由垂直關(guān)系,切線(xiàn)斜率為-1/k,由點(diǎn)斜式方程可求得切線(xiàn)方程.若k=0或斜率不存在,則由圖形可直接得切線(xiàn)方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線(xiàn)時(shí),常用幾何方法求解設(shè)切線(xiàn)方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線(xiàn)的距離等于半徑,可求得k,進(jìn)而切線(xiàn)方程即可求出.但要注意,此時(shí)的切線(xiàn)有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線(xiàn)的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線(xiàn)l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線(xiàn)與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線(xiàn)l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

  • 直線(xiàn)的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線(xiàn)的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線(xiàn)ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿(mǎn)足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線(xiàn)x-2y-2=0平行的直線(xiàn)方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線(xiàn)方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線(xiàn)方程為x-2y-1=0.故選A.4.已知兩條直線(xiàn)y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線(xiàn).(1)求實(shí)數(shù)m的范圍;(2)若該直線(xiàn)的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線(xiàn),則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來(lái)學(xué)習(xí)三角函數(shù)模型的簡(jiǎn)單應(yīng)用,進(jìn)一步突出函數(shù)來(lái)源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會(huì)用三角函數(shù)模型解決一些簡(jiǎn)單的實(shí)際問(wèn)題.2.實(shí)際問(wèn)題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問(wèn)題抽象為三角函數(shù)模型問(wèn)題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問(wèn)題中抽取基本的數(shù)學(xué)關(guān)系來(lái)建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問(wèn)題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問(wèn)題、數(shù)形結(jié)合、抽象概括等能力.

  • 人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)模型的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀(guān)世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問(wèn)題.2.能自建確定性函數(shù)模型解決實(shí)際問(wèn)題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;2.邏輯推理:通過(guò)數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問(wèn)題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問(wèn)題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題.重點(diǎn):利用函數(shù)模型解決實(shí)際問(wèn)題;難點(diǎn):數(shù)模型的構(gòu)造與對(duì)數(shù)據(jù)的處理.

  • 人教A版高中數(shù)學(xué)必修一不同函數(shù)增長(zhǎng)的差異教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一不同函數(shù)增長(zhǎng)的差異教學(xué)設(shè)計(jì)(2)

    本節(jié)課在已學(xué)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的增長(zhǎng)方式存在很大差異.事實(shí)上,這種差異正是不同類(lèi)型現(xiàn)實(shí)問(wèn)題具有不同增長(zhǎng)規(guī)律的反應(yīng).而本節(jié)課重在研究不同函數(shù)增長(zhǎng)的差異.課程目標(biāo)1.掌握常見(jiàn)增長(zhǎng)函數(shù)的定義、圖象、性質(zhì),并體會(huì)其增長(zhǎng)的快慢.2.理解直線(xiàn)上升、對(duì)數(shù)增長(zhǎng)、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算等核心素養(yǎng).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:常見(jiàn)增長(zhǎng)函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長(zhǎng)速度比較;3.數(shù)學(xué)運(yùn)算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù);5.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點(diǎn):比較函數(shù)值得大?。浑y點(diǎn):幾種增長(zhǎng)函數(shù)模型的應(yīng)用.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    由于三角函數(shù)是刻畫(huà)周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類(lèi)型函數(shù)的最重要的地方,而且對(duì)于周期函數(shù),我們只要認(rèn)識(shí)清楚它在一個(gè)周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來(lái)作圖,從畫(huà)出的圖形中觀(guān)察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫(huà)正弦函數(shù)、余弦函數(shù)的簡(jiǎn)圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫(huà)正弦曲線(xiàn)和余弦曲線(xiàn)的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正弦、余弦曲線(xiàn).2.理解正弦曲線(xiàn)與余弦曲線(xiàn)之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線(xiàn)與余弦曲線(xiàn)的概念; 2.邏輯推理:正弦曲線(xiàn)與余弦曲線(xiàn)的聯(lián)系; 3.直觀(guān)想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過(guò)正弦、余弦圖象圖像,解決不等式問(wèn)題及零點(diǎn)問(wèn)題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一對(duì)數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一對(duì)數(shù)函數(shù)的概念教學(xué)設(shè)計(jì)(2)

    對(duì)數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納對(duì)數(shù)函數(shù)的概念,通過(guò)函數(shù)的形式與特征解決一些與對(duì)數(shù)函數(shù)有關(guān)的問(wèn)題.課程目標(biāo)1、通過(guò)實(shí)際問(wèn)題了解對(duì)數(shù)函數(shù)的實(shí)際背景;2、掌握對(duì)數(shù)函數(shù)的概念,并會(huì)判斷一些函數(shù)是否是對(duì)數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對(duì)數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用對(duì)數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的思想總結(jié)對(duì)數(shù)函數(shù)概念.重點(diǎn):理解對(duì)數(shù)函數(shù)的概念和意義;難點(diǎn):理解對(duì)數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時(shí)間x的變化而衰減的規(guī)律.反過(guò)來(lái),已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長(zhǎng)時(shí)間呢?進(jìn)一步地,死亡時(shí)間t是碳14的含量y的函數(shù)嗎?

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的表示法教學(xué)設(shè)計(jì)(2)

    課本從引進(jìn)函數(shù)概念開(kāi)始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過(guò)函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時(shí),要充分發(fā)揮圖象的直觀(guān)作用.在研究圖象時(shí),又要注意代數(shù)刻畫(huà)以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時(shí),也體現(xiàn)了從特殊到一般的思維過(guò)程.課程目標(biāo)1、明確函數(shù)的三種表示方法;2、在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);3、通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一函數(shù)的應(yīng)用(一)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一函數(shù)的應(yīng)用(一)教學(xué)設(shè)計(jì)(2)

    客觀(guān)世界中的各種各樣的運(yùn)動(dòng)變化現(xiàn)象均可表現(xiàn)為變量間的對(duì)應(yīng)關(guān)系,這種關(guān)系常??捎煤瘮?shù)模型來(lái)描述,并且通過(guò)研究函數(shù)模型就可以把我相應(yīng)的運(yùn)動(dòng)變化規(guī)律.課程目標(biāo)1、能夠找出簡(jiǎn)單實(shí)際問(wèn)題中的函數(shù)關(guān)系式,初步體會(huì)應(yīng)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實(shí)際問(wèn)題; 2、感受運(yùn)用函數(shù)概念建立模型的過(guò)程和方法,體會(huì)一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡(jiǎn)單實(shí)際問(wèn)題中的函數(shù)關(guān)系式,根據(jù)題干信息寫(xiě)出分段函數(shù); 3.數(shù)學(xué)運(yùn)算:結(jié)合函數(shù)圖象或其單調(diào)性來(lái)求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過(guò)對(duì)稱(chēng)軸和定義域區(qū)間求最優(yōu)問(wèn)題; 5.數(shù)學(xué)建模:在具體問(wèn)題情境中,運(yùn)用數(shù)形結(jié)合思想,將自然語(yǔ)言用數(shù)學(xué)表達(dá)式表示出來(lái)。 重點(diǎn):運(yùn)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實(shí)際問(wèn)題;難點(diǎn):運(yùn)用函數(shù)思想理解和處理現(xiàn)實(shí)生活和社會(huì)中的簡(jiǎn)單問(wèn)題.

  • 人教A版高中數(shù)學(xué)必修一集合的基本運(yùn)算教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一集合的基本運(yùn)算教學(xué)設(shè)計(jì)(2)

    集合的基本運(yùn)算是人教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū),數(shù)學(xué)必修1第一章第三節(jié)的內(nèi)容. 在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ). 本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用. 本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對(duì)象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn).課程目標(biāo)1. 理解兩個(gè)集合的并集與交集的含義,能求兩個(gè)集合的并集與交集;2. 理解全集和補(bǔ)集的含義,能求給定集合的補(bǔ)集; 3. 能使用Venn圖表達(dá)集合的基本關(guān)系與基本運(yùn)算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:并集、交集、全集、補(bǔ)集含義的理解;2.邏輯推理:并集、交集及補(bǔ)集的性質(zhì)的推導(dǎo);3.數(shù)學(xué)運(yùn)算:求 兩個(gè)集合的并集、交集及補(bǔ)集,已知并集、交集及補(bǔ)集的性質(zhì)求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過(guò)并集、交集及補(bǔ)集的性質(zhì)列不等式組,此過(guò)程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及?問(wèn)題;

  • 人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一集合間的基本關(guān)系教學(xué)設(shè)計(jì)(2)

    第一節(jié)通過(guò)研究集合中元素的特點(diǎn)研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點(diǎn)通過(guò)研究元素得到兩個(gè)集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個(gè)集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識(shí)別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會(huì)直觀(guān)圖示對(duì)理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運(yùn)算:由集合間的關(guān)系求參數(shù)的范圍,常見(jiàn)包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過(guò)集合關(guān)系列不等式組, 此過(guò)程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及 問(wèn)題;5.數(shù)學(xué)建模:用集合思想對(duì)實(shí)際生活中的對(duì)象進(jìn)行判斷與歸類(lèi)。

  • 人教A版高中數(shù)學(xué)必修一簡(jiǎn)單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一簡(jiǎn)單的三角恒等變換教學(xué)設(shè)計(jì)(2)

    它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過(guò)這些公式進(jìn)行求值、化簡(jiǎn)、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡(jiǎn)單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值以及證明,進(jìn)而進(jìn)行簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡(jiǎn); 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.

上一頁(yè)123...484950515253545556575859下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!