素養(yǎng)提升作文中怎樣運(yùn)用“以小見大”的寫作手法(1)以小人物見大。這里的“小人物”是指在社會(huì)上不出名、沒有影響的人。以小人物見大,即以生活中平凡的小人物為敘寫對(duì)象,通過塑造小人物的形象,揭示其閃光的品質(zhì),彰顯其偉大的人格,折射出底層人民的光芒,喻人以大道理,動(dòng)人以大感情,從而起到激勵(lì)、感化讀者的大作用。(2)以小事見大。可以通過敘寫生活中極其平常的小事闡述一個(gè)大的道理。文化常識(shí)典故故事——君子之交“君子之交”語出《莊子·山木》:“且君子之交淡若水,小人之交甘若醴;君子淡以親,小人甘以絕。”君子之交,意思是賢者之間的交情,平淡如水,不尚虛華。唐貞觀年間,薛仁貴尚未得志之前,與妻子住在一個(gè)破窯洞中,衣食無著落,全靠王茂生夫婦接濟(jì)。后來,薛仁貴參軍,在跟隨唐太宗李世民御駕東征時(shí),立下汗馬功勞,被封為“平陽郡公”。一登龍門,身價(jià)百倍,前來送禮祝賀的文武大臣絡(luò)繹不絕,可都被薛仁貴婉言謝絕了。
本教學(xué)設(shè)計(jì)著眼于民歌特點(diǎn)。第1課時(shí)重在誦讀詩歌,設(shè)計(jì)不同層次的讀,引導(dǎo)學(xué)生從詩歌的形式、節(jié)奏、韻律、情感四個(gè)方面感受民歌形式自由、具有韻律美、節(jié)奏感強(qiáng)、情感富于變化的特點(diǎn),從而體會(huì)民歌的情味。第2課時(shí)重在品讀詩歌,引導(dǎo)學(xué)生通過品析情節(jié)、品味語言、析讀主題等方式,體會(huì)詩歌語言剛健明朗而質(zhì)樸生動(dòng)的特點(diǎn),逐層解讀民歌所塑造的傳奇形象,并理解民歌所傳達(dá)的愛國情懷。素養(yǎng)提升互 文互文,也叫互辭,是古詩文中常用的一種修辭手法。古文中對(duì)它的解釋是:“參互成文,合而見義?!本唧w地說,它是這樣一種表現(xiàn)形式:上下兩句或一句話中的兩個(gè)部分,看似各說兩件事,實(shí)則是互相呼應(yīng),互相闡發(fā),互相補(bǔ)充,說的是一件事。即上下文義互相交錯(cuò)、互相滲透、互相補(bǔ)充地來表達(dá)一個(gè)完整的意思。初中階段,常見的互文一般有三類:(1)單句互文單句互文,即在同一個(gè)句子中前后兩個(gè)詞語在意義上相互交錯(cuò)、滲透、補(bǔ)充。如:秦時(shí)明月漢時(shí)關(guān)。
魯迅曾把《昆蟲記》稱為“講昆蟲的故事”“講昆蟲生活”的楷模。魯迅說:“他的著作還有兩種缺點(diǎn):一是嗤笑解剖學(xué)家,二是用人類道德于昆蟲界?!敝茏魅苏f:“法布爾的書中所講的是昆蟲的生活,但我們讀了卻覺得比看那些無聊的小說戲劇更有趣味,更有意義?!卑徒鹫f:“《昆蟲記》融作者畢生的研究成果和人生感悟于一爐,以人性觀照蟲性,將昆蟲世界化作供人類獲取知識(shí)、趣味、美感和思想的美文?!眰鹘y(tǒng)文化玉蟬:蟬意喻人生蟬在古人的心目中地位很高,向來被視為純潔、清高、通靈的象征。玉蟬究其用途,大體可分為四種:一是佩蟬,是專門佩戴在人身上以作裝飾和避邪用,示高潔;一種為冠蟬,是作為飾物綴于帽子上的,表示高貴;一種是琀蟬,以蟬的羽化比喻人能重生,寓指精神不死,再生復(fù)活;還有一種是鎮(zhèn)蟬,做鎮(zhèn)紙用的文房用品,多出現(xiàn)在明代以后,前三種蟬屬于高古玉,主要產(chǎn)生在商周至戰(zhàn)漢時(shí)期。
一、加強(qiáng)組織領(lǐng)導(dǎo),明確職責(zé)分工一是成立了專項(xiàng)行動(dòng)領(lǐng)導(dǎo)小組,由xx鎮(zhèn)鎮(zhèn)長助理xx、副鎮(zhèn)長xxx任組長,安監(jiān)科科長、xxx縣派出所所長、xx店派出所所長、消防工作站負(fù)責(zé)人任副組長,各相關(guān)部門負(fù)責(zé)人任組員。領(lǐng)導(dǎo)小組下設(shè)辦公室在安監(jiān)科,安監(jiān)科科長任辦公室主任。二是制定印發(fā)了《xx鎮(zhèn)人民政府關(guān)于印發(fā)“防風(fēng)險(xiǎn)、除隱患、保平安”消防安全隱患集中排查專項(xiàng)行動(dòng)方案的通知》,明確了工作目標(biāo),排查重點(diǎn)范圍,整治突出問題以及鎮(zhèn)級(jí)政府、行業(yè)部門、村(社區(qū))、企事業(yè)單位的職責(zé)分工,并對(duì)具體工作提出了相關(guān)要求。三是在全鎮(zhèn)企業(yè)主要負(fù)責(zé)人參加的安全會(huì)議上,由副鎮(zhèn)長李寶華就“防風(fēng)險(xiǎn)、除隱患、保平安”消防安全隱患集中排查專項(xiàng)行動(dòng)工作進(jìn)行了部署,要求各單位高度重視,立即行動(dòng),全面開展本單位消防安全隱患自查整改工作。二、明確排查重點(diǎn),全力消除隱患此次消防安全隱患集中排查的范圍是全鎮(zhèn)各行業(yè)、各領(lǐng)域、各轄區(qū)的單位場所,在全面排查基礎(chǔ)上,重點(diǎn)開展集中整治。一是重點(diǎn)行業(yè)領(lǐng)域。包括:倉儲(chǔ)物流、建筑施工、文化旅游、商場市場、養(yǎng)老醫(yī)療、教育、文物等行業(yè)領(lǐng)域,圍繞行業(yè)火災(zāi)風(fēng)險(xiǎn)、履行監(jiān)管責(zé)任、完善組織架構(gòu)、建立規(guī)章制度、落實(shí)整改措施等環(huán)節(jié)開展了排查整治;快遞、外賣行業(yè)領(lǐng)域,圍繞電動(dòng)自行車源頭管控、日常管理、設(shè)施建設(shè)以及銷售門店、出租房屋管理等方面開展了排查整治;電力、燃?xì)庑袠I(yè)領(lǐng)域,圍繞電器產(chǎn)品質(zhì)量、電氣線路敷設(shè)、配備專業(yè)電工以及液化石油氣存儲(chǔ)、運(yùn)輸、銷售、使用等環(huán)節(jié)開展了排查整治。
(二)說學(xué)法指導(dǎo)把“學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生”,倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式,因而,我在教學(xué)過程中特別重視創(chuàng)造學(xué)生自主參與,合作交流的機(jī)會(huì),充分利用學(xué)生已獲得的生活體驗(yàn),通過相關(guān)現(xiàn)象的再現(xiàn),激發(fā)學(xué)生主動(dòng)參與,積極思考,分析現(xiàn)象背后的哲學(xué)理論依據(jù),幫助學(xué)生樹立批判精神和創(chuàng)新意識(shí),從而增強(qiáng)教學(xué)效果,讓學(xué)生在自己思維的活躍中領(lǐng)會(huì)本節(jié)課的重點(diǎn)難點(diǎn)。(三)說教學(xué)手段:我運(yùn)用多媒體輔助教學(xué),展示富有感染力的各種現(xiàn)象和場景,營造一個(gè)形象生動(dòng)的課堂氣氛。三、說教學(xué)過程教學(xué)過程堅(jiān)持"情境探究法",分為"導(dǎo)入新課——推進(jìn)新課——走進(jìn)生活"三個(gè)層次,環(huán)環(huán)相扣,逐步推進(jìn),幫助學(xué)生完成由感性認(rèn)識(shí)到理性認(rèn)識(shí)的飛躍。下面我重點(diǎn)簡述一下對(duì)教學(xué)過程的設(shè)計(jì)。
一、教材分析(一)說本框題的地位與作用《樹立創(chuàng)新意識(shí)是唯物辯證法的要求》是人教版教材高二《生活與哲學(xué)》第三單元第十課的第一框題,該部分的內(nèi)容實(shí)質(zhì)上是在闡述辯證法的革命批判精神和否定之否定規(guī)律。是第三單元思想方法與創(chuàng)新意識(shí)》的重點(diǎn)和核心之一。學(xué)好這部分的知識(shí)對(duì)于學(xué)生進(jìn)一步理解辯證法的思維方法,樹立創(chuàng)新意識(shí)起著重要的作用。(二)說教學(xué)目標(biāo)根據(jù)課程標(biāo)準(zhǔn)和課改精神,在教學(xué)中確定如下三維目標(biāo):1、知識(shí)目標(biāo):辯證否定觀的內(nèi)涵,辯證法的本質(zhì)。辯證否定是自我否定,辯證否定觀與書本知識(shí)和權(quán)威思想的關(guān)系,辯證法的革命批判精神與創(chuàng)新意識(shí)的關(guān)系,分析辯證否定的實(shí)質(zhì)是"揚(yáng)棄",是既肯定又否定;既克服又保留。深刻理解辯證法的革命批判精神,分析為什么辯證法的革命批判精神同創(chuàng)新意識(shí)息息相關(guān)。
三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
(一)調(diào)整產(chǎn)業(yè)結(jié)構(gòu),大力發(fā)展經(jīng)濟(jì),創(chuàng)造良好的就業(yè)環(huán)境隨著社會(huì)轉(zhuǎn)型產(chǎn)業(yè)升級(jí)和國家就業(yè)政策的引導(dǎo)支持,婦女就業(yè)問題得到緩解,但勞動(dòng)力剩余導(dǎo)致的失業(yè)現(xiàn)象仍然存在。雖然縣相關(guān)職能部門在這方面做了大量的工作,但這只解決了燃眉之急,沒有根本解決問題。20xx年城鎮(zhèn)登記失業(yè)人數(shù)達(dá)x萬人,其中女性失業(yè)人數(shù)x萬人,在失業(yè)總?cè)藬?shù)中女性占到x%。對(duì)此,我們要多開發(fā)一些適合女性就業(yè)的工作崗位,多為女性創(chuàng)造一些就業(yè)機(jī)會(huì),為促進(jìn)婦女的就業(yè)創(chuàng)造良好的政策環(huán)境。不斷幫助婦女轉(zhuǎn)變就業(yè)觀念,鼓勵(lì)她們參加免費(fèi)職業(yè)培訓(xùn)、創(chuàng)業(yè)培訓(xùn),使其有一技之長;積極落實(shí)如小額貸款、稅收等優(yōu)惠政策,促進(jìn)婦女就業(yè)。(二)應(yīng)健全完善未成年人保護(hù)工作的組織協(xié)調(diào)機(jī)制留守兒童缺少關(guān)愛成為重要的社會(huì)問題。隨著城鎮(zhèn)化進(jìn)程的不斷推進(jìn),留守兒童問題已經(jīng)成為一個(gè)社會(huì)問題,而且成上升趨勢。父母雙方在外的留守兒童有x%以上隨祖輩生活,由于父母不在身邊,親情缺失,監(jiān)護(hù)不力,留守兒童幾乎生活在無限制狀態(tài)下。主要存在以下問題:一是身體素質(zhì)不佳。
七、勞動(dòng)保護(hù)、勞動(dòng)條件和職業(yè)危害防護(hù)第十五條甲方根據(jù)生產(chǎn)崗位的需要,按照國家有關(guān)勞動(dòng)安全、衛(wèi)生的規(guī)定為乙方配備必要的安全防護(hù)措施,發(fā)放必要的勞動(dòng)保護(hù)用品。第十六條甲方根據(jù)國家有關(guān)法律、法規(guī),建立安全生產(chǎn)制度;乙方應(yīng)當(dāng)嚴(yán)格遵守甲方的勞動(dòng)安全制度,嚴(yán)禁違章作業(yè),防止勞動(dòng)過程中的事故,減少職業(yè)危害。第十七條甲方應(yīng)當(dāng)建立、健全職業(yè)病防治責(zé)任制度,加強(qiáng)對(duì)職業(yè)病防治的管理,提高職業(yè)病防治水平。八、勞動(dòng)合同的解除、終止和經(jīng)濟(jì)補(bǔ)償?shù)谑藯l甲乙雙方解除、終止勞動(dòng)合同應(yīng)當(dāng)依照《中華人民共和國勞動(dòng)合同法》和國家及北京市有關(guān)規(guī)定執(zhí)行。第十九條甲方應(yīng)當(dāng)在解除或者終止本合同時(shí),為乙方出具解除或者終止勞動(dòng)合同的證明,并在十五日內(nèi)為乙方辦理檔案和社會(huì)保險(xiǎn)關(guān)系轉(zhuǎn)移手續(xù)。
(四)、課堂總結(jié)、體驗(yàn)成功引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、學(xué)習(xí)方法、學(xué)習(xí)結(jié)果、情感等進(jìn)行全面總結(jié),讓學(xué)生體驗(yàn)學(xué)習(xí)的成功感,同時(shí),進(jìn)一步系統(tǒng)、完善知識(shí)結(jié)構(gòu)??傊菊n的教學(xué)設(shè)計(jì)力求體現(xiàn)“以學(xué)生為本”的教學(xué)理念,具體體現(xiàn)在以下幾個(gè)方面:(一)、創(chuàng)設(shè)生動(dòng)的情景,激發(fā)探索的樂趣,讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系。課的引入以一幅學(xué)生經(jīng)常接觸的,喜聞樂見的購買玩具這一題材為切入點(diǎn)。在練習(xí)設(shè)計(jì)中,改變枯燥抽象的數(shù)字計(jì)算練習(xí),選取了一組寓有童趣的素材。它們以豐富多彩的呈現(xiàn)方式深深地吸引著學(xué)生,使他們認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,使學(xué)生感到有趣、有挑戰(zhàn)性,激發(fā)他們好奇,好勝的心理,從而誘發(fā)他們?nèi)ブ鲃?dòng)尋求解決問題的策略,同時(shí)體驗(yàn)到數(shù)學(xué)與生活的聯(lián)系。