提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

干部隊(duì)伍建設(shè)情況調(diào)研報(bào)告

  • 小學(xué)數(shù)學(xué)蘇教版六年級(jí)下冊《第六單元第三課反比例關(guān)系、反比例量》教學(xué)設(shè)計(jì)說課稿

    小學(xué)數(shù)學(xué)蘇教版六年級(jí)下冊《第六單元第三課反比例關(guān)系、反比例量》教學(xué)設(shè)計(jì)說課稿

    提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時(shí)間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價(jià)、數(shù)量和總價(jià)之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導(dǎo)入新課: 如果總價(jià)一定,單價(jià)和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:7.1《平面向量的概念及線性運(yùn)算》教學(xué)設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 7.1 平面向量的概念及線性運(yùn)算 *創(chuàng)設(shè)情境 興趣導(dǎo)入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導(dǎo) 分析 了解 觀看 課件 思考 自我 分析 從實(shí)例出發(fā)使學(xué)生自然的走向知識(shí)點(diǎn) 0 3*動(dòng)腦思考 探索新知 【新知識(shí)】 在數(shù)學(xué)與物理學(xué)中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標(biāo)量),例如質(zhì)量、時(shí)間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點(diǎn)叫做平面向量的起點(diǎn),有向線段的終點(diǎn)叫做平面向量的終點(diǎn).以A為起點(diǎn),B為終點(diǎn)的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時(shí)應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果 10

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.1《兩角和與差的正弦公式與余弦公式》教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設(shè)情境 興趣導(dǎo)入 問題 兩角和的余弦公式內(nèi)容是什么? 兩角和的余弦公式內(nèi)容是什么? 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 5*動(dòng)腦思考 探索新知 由同角三角函數(shù)關(guān)系,知 , 當(dāng)時(shí),得到 (1.5) 利用誘導(dǎo)公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應(yīng)使式子的左右兩端都有意義. 總結(jié) 歸納 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 啟發(fā)引導(dǎo)學(xué)生發(fā)現(xiàn)解決問題的方法 15*鞏固知識(shí) 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進(jìn)行轉(zhuǎn)換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應(yīng)用公式.要注意應(yīng)用這種變形方法來解決問題. 引領(lǐng) 講解 說明 引領(lǐng) 分析 說明 啟發(fā) 引導(dǎo) 啟發(fā) 分析 觀察 思考 主動(dòng) 求解 觀察 思考 理解 口答 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 學(xué)生 自我 發(fā)現(xiàn) 歸納 25

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)兩條直線的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時(shí),“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動(dòng)腦思考 探索新知 【新知識(shí)】 當(dāng)兩條直線、的斜率都存在且都不為0時(shí)(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當(dāng)直線、的斜率都是0時(shí)(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當(dāng)兩條直線、的斜率都不存在時(shí)(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當(dāng)直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時(shí),兩條直線相交. 由上面的討論知,當(dāng)直線、的斜率都存在時(shí),設(shè),,則 兩個(gè)方程的系數(shù)關(guān)系兩條直線的位置關(guān)系相交平行重合 當(dāng)兩條直線的斜率都存在時(shí),就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關(guān)系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個(gè)不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊:10.3《總體、樣本與抽樣方法》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 用樣本估計(jì)總體時(shí),樣本抽取得是否恰當(dāng),直接關(guān)系到總體特性估計(jì)的準(zhǔn)確程度.那么,應(yīng)該如何抽取樣本呢? 介紹 質(zhì)疑 了解 思考 啟發(fā) 學(xué)生思考 0 5*動(dòng)腦思考 探索新知 【新知識(shí)】 下面介紹幾種常用的抽樣方法. 1.簡單隨機(jī)抽樣 從一批蘋果中選取10個(gè),每個(gè)蘋果被選中的可能性一般是不相等的,放在上面的蘋果更容易被選中.實(shí)際過程又不允許將整箱蘋果倒出來,攪拌均勻.因此,10個(gè)蘋果做樣本的代表意義就會(huì)打折扣. 我們采用抽簽的方法,將蘋果按照某種順序(比如箱、層、行、列順序)編號(hào),寫在小紙片上.將小紙片揉成小團(tuán),放到一個(gè)不透明的袋子中,充分?jǐn)嚢韬螅購闹兄饌€(gè)抽出10個(gè)小紙團(tuán).最后根據(jù)編號(hào)找到蘋果. 這種抽樣叫做簡單隨機(jī)抽樣. 簡單隨機(jī)抽樣必須保證總體的每個(gè)個(gè)體被抽到的機(jī)會(huì)是相同的.也就是說,簡單隨機(jī)抽樣是等概率抽樣. 抽簽法(俗稱抓鬮法)是最常用的簡單隨機(jī)抽樣方法.其主要步驟為 (1)編號(hào)做簽:將總體中的N個(gè)個(gè)體編上號(hào),并把號(hào)碼寫到簽上; (2)抽簽得樣本:將做好的簽放到容器中,攪拌均勻后,從中逐個(gè)抽出n個(gè)簽,得到一個(gè)容量為n的樣本. 當(dāng)總體中所含的個(gè)體較少時(shí),通常采用簡單隨機(jī)抽樣.例如,從某班抽取10位同學(xué)去參加義務(wù)勞動(dòng),就可采用抽簽的方法來抽取樣本. 當(dāng)總體中的個(gè)體較多時(shí),“攪拌均勻”不容易做到,這樣抽出的樣本的代表性就會(huì)打折扣.此時(shí)可以采用“隨機(jī)數(shù)法”抽樣. 產(chǎn)生隨機(jī)數(shù)的方法很多,利用計(jì)算器(或計(jì)算機(jī))可以方便地產(chǎn)生隨機(jī)數(shù). CASIO fx 82ESPLUS函數(shù)型計(jì)算器(如圖10-3),利用 · 鍵的第二功能產(chǎn)生隨機(jī)數(shù).操作方法是:首先設(shè)置精確度并將計(jì)算器顯示設(shè)置為小數(shù)狀態(tài),依次按鍵SHIFT 、 MODE、 2 ,然后連續(xù)按鍵 SHIFT 、 RAN# ,以后每按鍵一次 = 鍵,就能隨機(jī)得到0~1之間的一個(gè)純小數(shù). 采用“隨機(jī)數(shù)法”抽樣的步驟為: (1)編號(hào):將總體中的N個(gè)個(gè)體編上號(hào); (2)選號(hào):指定隨機(jī)號(hào)的范圍,利用計(jì)算器產(chǎn)生n個(gè)有效的隨機(jī)號(hào)(范圍之外或重復(fù)的號(hào)無效),得到一個(gè)容量為n的樣本. 講解 說明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 20

  • 人教A版高中數(shù)學(xué)必修一二次函數(shù)與一元二次方程、不等式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一二次函數(shù)與一元二次方程、不等式教學(xué)設(shè)計(jì)(2)

    三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.

  • 人教A版高中數(shù)學(xué)必修二有限樣本空間與隨機(jī)事件事件的關(guān)系和運(yùn)算教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二有限樣本空間與隨機(jī)事件事件的關(guān)系和運(yùn)算教學(xué)設(shè)計(jì)

    新知講授(一)——隨機(jī)試驗(yàn) 我們把對(duì)隨機(jī)現(xiàn)象的實(shí)現(xiàn)和對(duì)它的觀察稱為隨機(jī)試驗(yàn),簡稱試驗(yàn),常用字母E表示。我們通常研究以下特點(diǎn)的隨機(jī)試驗(yàn):(1)試驗(yàn)可以在相同條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);(3)每次試驗(yàn)總是恰好出現(xiàn)這些可能結(jié)果中的一個(gè),但事先不確定出現(xiàn)哪個(gè)結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎(jiǎng)時(shí),將10個(gè)質(zhì)地和大小完全相同、分別標(biāo)號(hào)0,1,2,...,9的球放入搖獎(jiǎng)器中,經(jīng)過充分?jǐn)嚢韬髶u出一個(gè)球,觀察這個(gè)球的號(hào)碼。這個(gè)隨機(jī)試驗(yàn)共有多少個(gè)可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號(hào)碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號(hào)碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機(jī)試驗(yàn)E的每個(gè)可能的基本結(jié)果稱為樣本點(diǎn),全體樣本點(diǎn)的集合稱為試驗(yàn)E的樣本空間。

  • 空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運(yùn)算的坐標(biāo)表示教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對(duì)稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱,我們把拋物線的對(duì)稱軸叫做拋物線的軸.拋物線只有一條對(duì)稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過豐富的實(shí)例展開教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為

  • 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對(duì)稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對(duì)稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對(duì)于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 人教版高中數(shù)學(xué)選修3分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理(1)教學(xué)設(shè)計(jì)

    問題1. 用一個(gè)大寫的英文字母或一個(gè)阿拉伯?dāng)?shù)字給教室里的一個(gè)座位編號(hào),總共能編出多少種不同的號(hào)碼?因?yàn)橛⑽淖帜腹灿?6個(gè),阿拉伯?dāng)?shù)字共有10個(gè),所以總共可以編出26+10=36種不同的號(hào)碼.問題2.你能說說這個(gè)問題的特征嗎?上述計(jì)數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標(biāo)準(zhǔn),根據(jù)問題條件分為字母號(hào)碼和數(shù)字號(hào)碼兩類;(2)分別計(jì)算各類號(hào)碼的個(gè)數(shù);(3)各類號(hào)碼的個(gè)數(shù)相加,得出所有號(hào)碼的個(gè)數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計(jì)數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時(shí),一名高中畢業(yè)生了解到,A,B兩所大學(xué)各有一些自己感興趣的強(qiáng)項(xiàng)專業(yè),如表,

上一頁123...121122123124125126127128129130131132下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!