至此,估計學(xué)生基本能夠掌握定理,達到預(yù)定目標(biāo),這時,利用提問形式,師生共同進行小結(jié)。五、幾點說明1、板書設(shè)計:為了使本節(jié)課更具理論性、邏輯性,我將板書設(shè)計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學(xué)生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設(shè)計要突出的特色:為了給學(xué)生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學(xué)課程標(biāo)準(zhǔn)下的基本理念和總體目標(biāo)為指導(dǎo)思想,在教學(xué)過程中始終面向全體學(xué)生,依據(jù)學(xué)生的實際水平,選擇適當(dāng)?shù)慕虒W(xué)起點和教學(xué)方法,充分讓學(xué)生參與教學(xué),在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學(xué)生都有所得,我注意前后知識的鏈接,進行各學(xué)科間的整合,為學(xué)生提供了廣闊的思考空間,同時讓學(xué)生利用所學(xué)知識解決實際問題,感受理論聯(lián)系實際的思想方法。
注意強調(diào)概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習(xí)慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學(xué)生求∠A,∠B的正切及時強化學(xué)生對概念的3、正切函數(shù)的應(yīng)用理解通過實際問題的解答進一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學(xué)生進行正切的變式訓(xùn)練,讓學(xué)生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習(xí)的安插注意梯度,讓不同的學(xué)生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點及注意點五、達標(biāo)測試具體思路:把幾個問題分為四個等級,方便對學(xué)生的了解;通過評價讓學(xué)生對自己的學(xué)習(xí)也做到心中有數(shù)。
設(shè)計說明:設(shè)計這組測驗為了反饋學(xué)生學(xué)習(xí)情況,第1題較簡單,也是為了讓提高學(xué)生學(xué)習(xí)士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學(xué)生的不同需求.教師可們采用搶答方式調(diào)動學(xué)生積極性,學(xué)生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習(xí)題A組1,2,3; B層 習(xí)題B組.設(shè)計說明:設(shè)計第1題的原因保證了知識的完整性,學(xué)生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應(yīng)用了新學(xué)知識,又給學(xué)生提供了更廣泛地思考空間.第2題,主要是讓學(xué)生進一步鞏固新學(xué)知識,規(guī)范解題步驟. 在作業(yè)設(shè)計時,既面向全體學(xué)生,又尊重學(xué)生的個體差異,以掌握知識形成能力為主要目的.
通過與學(xué)生講解切線長定義,讓學(xué)生在參與、合作中有一個猜想,再進一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學(xué)的方法加以證明。問題的解決,使學(xué)生既能解決新的問題,同時應(yīng)用到全等、切線的性質(zhì)等知識,同時三條輔助線中,兩條運用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學(xué)習(xí)學(xué)生們已經(jīng)對切線長定理有了較深刻的了解。為了加深學(xué)生對定理的認(rèn)識并培養(yǎng)學(xué)生的應(yīng)用意識學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨立完成,加深對切線長定理的理解,老師進行點評,對于例2,由師生共同分析完成,交進行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識體系中,使學(xué)生的知識體系得到補充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識。
本節(jié)課的設(shè)計是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動性,并提高課堂效率。2、學(xué)法研究“贈人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的知識,首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領(lǐng)域,從不同角度去分析、解決新問題,通過基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
第一道例題提示學(xué)生把地基看成一個幾何圖形,即正六邊形,逐步引導(dǎo)學(xué)生完成例題的解答。例題1:有一個亭子它的地基是半徑為4米的正六邊形,求地基的周長和面積(精確到0.1平方米)。第二道例題,我讓學(xué)生獨立完成,我在下面巡視,個別輔導(dǎo),同時我將關(guān)注不同層次學(xué)生對本節(jié)知識的理解、掌握程度,及時調(diào)整教學(xué)。最后,引導(dǎo)學(xué)生總結(jié)這一類問題的求解方法。這兩道例題旨在將實際問題轉(zhuǎn)化成數(shù)學(xué)問題,將多邊形化歸成三角形來解決,體現(xiàn)了化歸思想的應(yīng)用。(七)、課堂小結(jié)(1)學(xué)完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對學(xué)生素質(zhì)的差異設(shè)計了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有佘力的學(xué)生有所提高,從而達到拔尖和“減負(fù)”的目的。
(一)自學(xué)質(zhì)疑看書 解決下面兩個問題:1.下列圖中的兩個臺階哪個更陡?你是怎么判斷的? 答:圖 的臺階更陡,理由 2.除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?
《用尺規(guī)作三角形》是北師大版《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書.數(shù)學(xué)》七年級下冊第五章第五節(jié)的內(nèi)容。在之前的學(xué)習(xí)中,我們已經(jīng)學(xué)會用尺規(guī)作線段和角,而邊和角是三角形的基本元素,這節(jié)課主要是學(xué)習(xí)利用尺規(guī)按要求做三角形,表面上看是操作的過程,但教科書中提出了有關(guān)探究性問題,目的是引導(dǎo)學(xué)生關(guān)注作圖背后的數(shù)學(xué)思考,即用尺規(guī)作三角形用到了兩個三角形全等的條件,因此本課教學(xué)應(yīng)引導(dǎo)學(xué)生積極思考,使學(xué)生體會到作圖的每一步驟都是有根 有 據(jù)的.二、教學(xué)目標(biāo)分析參照《課程標(biāo)準(zhǔn)》的要求及教材的特點,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征 ,我制定了如下教學(xué)目標(biāo):1、知識與技能:1.會用尺規(guī)按要求作三角形:已知三邊作三角形,已知兩角及夾邊作三角形,已知兩邊及夾角作三角形.2.會寫出三角形的已知、求作、作法. 3.能對新作三角形給出合理的解釋.
教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標(biāo). 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領(lǐng) 分析 仔細 分析 講解 關(guān)鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果
2、課標(biāo)要求對于本節(jié)課內(nèi)容課標(biāo)要求:探索并掌握兩個三角形全等的條件;注重所學(xué)內(nèi)容與現(xiàn)實生活的聯(lián)系,注重經(jīng)歷觀察、操作、推理、想像等探索過程。初步建立空間觀念,發(fā)展幾何直覺;在探索并掌握兩個三角形全等的條件,與他人合作交流的過程中,發(fā)展合情推理,進一步學(xué)習(xí)有條理的思考與表達。二、學(xué)生分析 1、七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,激發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要不斷創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,充分發(fā)揮學(xué)生學(xué)習(xí)的主動性,體現(xiàn)學(xué)生的主體地位。
一.學(xué)生情況分析對于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過量、折、拼的方法進行了合情推理并得出了相關(guān)的推論。在小學(xué)認(rèn)識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。但在學(xué)生升入初中階段學(xué)習(xí)過推理證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明?,F(xiàn)在的學(xué)生喜歡動手實驗,操作能力較強,但對知識的歸納、概括能力以及知識的遷移能力不強。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。
三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?
解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識方程模型的重要性.通過列方程解應(yīng)用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實際生活的聯(lián)系,進一步感知方程的應(yīng)用價值.
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標(biāo)檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2