在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當△ABC滿足AB=AC時,四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結:本題綜合考查了矩形和全等三角形的判定方法,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.三、板書設計矩形的判定對角線相等的平行四邊形是矩形三個角是直角的四邊形是矩形有一個角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學生親身經歷知識的發(fā)生過程,并會運用定理解決相關問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動手實踐、合作探索、小組交流,培養(yǎng)學生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會計算菱形的周長嗎?三、例題精講例1.課本3頁例1例2.已知:在菱形ABCD中,對角線AC、BD相交于點O,E、F、G、H分別是菱形ABCD各邊的中點,求證:OE=OF=OG=OH.四、課堂檢測:1.已知四邊形ABCD是菱形,O是兩條對角線的交點,AC=8cm,DB=6cm,菱形的邊長是________cm.2.菱形ABCD的周長為40cm,兩條對角線AC:BD=4:3,那么對角線AC=______cm,BD=______cm.3.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為 4.已知菱形的面積為30平方厘米,如果一條對角線長為12厘米,則別一條對角線長為________厘米.5.菱形的兩條對角線把菱形分成全等的直角三角形的個數是( ).(A)1個 (B)2個 (C)3個 (D)4個6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長和面積
方法三:一個同學先畫兩條等長的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點C,連接BC、CD,就得到了一個四邊形,猜一猜,這是什么四邊形?請你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結論:三、例題鞏固課本6頁例2 四、課堂檢測1、下列判別錯誤的是( )A.對角線互相垂直,平分的四邊形是菱形. B、對角線互相垂直的平行四邊形是菱形C.有一條對角線平分一組對角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個四邊形是菱形的是( )A.兩條對角線相等 B.兩條對角線互相垂直C.兩條對角線相等且垂直 D.兩條對角線互相垂直平分3、要判斷一個四邊形是菱形,可以首先判斷它是一個平行四邊形,然后再判定這個四邊形的一組__________或兩條對角線__________.4、已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結:判定一個四邊形是菱形時,要結合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或對角線互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經歷菱形的證明、猜想的過程,進一步提高學生的推理論證能力,體會證明過程中所運用的歸納概括以及轉化等數學方法.在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.
(2)如果對應著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據兩矩形的對應邊是否成比例來判斷兩矩形是否相似;(2)根據矩形相似的條件列出等量關系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設兩個矩形相似,不妨設小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結:因為矩形的四個角均是直角,所以在有關矩形相似的問題中,只需看對應邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對應邊的比稱為相似比;(3)當相似比為1時,兩個多邊形全等.二、運用相似多邊形的性質.活動3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動:教師出示例題,提出問題;學生活動:學生通過例題運用相似多邊形的性質,正確解答出角 的大小和EH的長度 .(2人板演)活動41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實際距離.2.如圖所示的兩個直角三角形相似嗎?為什么?3.如圖所示的兩個五邊形相似,求未知邊 、 、 、 的長度.教師活動:在活動中,教師應重點關注:(1)學生參與活動的熱情及語言歸納數學結論的能力;(2)學生對于相似多邊形的性質的掌握情況.三、回顧與反思.(1)談談本節(jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習題4.4
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設該商品每天的利潤為y元,求y與x的函數關系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數關系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導學生觀察函數關系式(1)和(2),提出問題讓學生思考回答;(1)函數關系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數關系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導圖中的問題以及P1頁的問題2有什么共同特點?讓學生討論、歸結為:自變量x為何值時,函數y取得最大值。2.二次函數定義:形如y=ax2+bx+c (a、b、、c是常數,a≠0)的函數叫做x的二次函數, a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.
(3)若要滿足結論,則∠BFO=∠GFC,根據切線長定理得∠BFO=∠EFO,從而得到這三個角應是60°,然后結合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結:由于存在性問題的結論有兩種可能,所以具有開放的特征,在假設存在性以后進行的推理或計算.一般思路是:假設存在——推理論證——得出結論.若能導出合理的結果,就做出“存在”的判斷,若導出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結:注意運用平面內兩點之間的距離公式,設平面內任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關系的實際應用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據銳角三角函數的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結:當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數有關的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關系;(2)試證明你的結論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數的定義可求出sinα,sinβ的關系式即可得出結論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結:利用三角函數的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關鍵.
[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
2. 內容內在邏輯本單元親子之間的交往既承接了上一課的“師生之間”的交往,也為七年級 下冊關于中學生提升在集體中的交往水平和能力奠定了堅實的基礎,因此本單元 在教材中起承上啟下的作用。第一框“家的意味”,通過對“家規(guī)” “家訓”的探究,引出中國家庭文化中“孝”的精神內涵,引導學生對家庭美德進行深入思考,學會孝親敬長。第二框“愛在家人間”,通過體驗家人間的親情之愛,進而引導學生感受對 家人割舍不斷的情感。第三框“讓家更美好”,通過對傳統(tǒng)家庭與現(xiàn)代家庭的比較,引導學生認識 現(xiàn)代家庭的特點,樹立共創(chuàng)共享家庭美德的意識,共創(chuàng)和諧美德之家。從初識家中“孝”,體驗家中“愛”,處理家中“沖突”,到自覺共建家庭 “美德”,學生逐步體味親情之愛,將“親情之愛”內化于心、夕卜化于行。(三)學情分析(1) 認知水平與心理特點七年級學生正處于青春期,是生理和心理急劇變化的關鍵時期,自我意識不 斷增強,逆反心理更加強烈,情緒波動較大。
我們一家乘車行駛在黃土高原上,眺望遠處云朵,盡情享受著清風的洗禮……因為我們要回老家嘍!倘若乖乖地欣賞美景,是坐不住的。雖說有起伏不定的高原,波濤洶涌的黃河,不時從石縫里“蹦”出來的水絲簾,一望澄澈的藍天,悠然飄過的白云……可當這一切的美景同時“刷”在你的眼前,且接連不斷地出現(xiàn)時,還是會讓你感到幾分乏味。因為,這可是八小時的長途跋涉??!每到這時候,車里的人們就瘋狂了起來。雖說只有區(qū)區(qū)四人,可還是組成了一個超級合唱團。不信你看爸爸已經興奮起來。只見他清清嗓子,扭動身子,接著便“肆無忌憚”地高聲唱起來。媽媽則是一副欲唱又止的樣子,最終也只是淡淡地笑了笑。在這一剎那,媽媽神情是最復雜也是最可愛的。是快樂還是驕傲?是幸福還是羞澀?總之,略有些放不開。后來,她也開始有節(jié)奏地在車門上敲擊,敲出一串美妙又興奮的聲音。好像她所有的快樂都被譜成了一首無拘無束的歌。
4.充當狀語的名詞和中心詞之間要連讀,即名詞作狀語時,一般在該詞前停頓,且不能把狀語與中心詞讀開。若分開讀,就錯將狀語當成了主語,改變了句子的意思。5.“而”字后應該停頓。但“而”字在句中若起到下列作用,那么就不能停頓,也就是說,“而”字不能和后面的詞語分開讀,應該連讀。(1)“而”在句中如果連接的是形容詞(或副詞)與動詞,即“形容詞(副詞)+而+動詞”,這時前邊的形容詞或副詞充當狀語,起修飾后面的動詞的作用,不能分開讀。(2)“而”在句中如果連接的是兩個動詞,即“動詞+而+動詞”,那么“而”表示順承,也就是說,前面一個動作發(fā)生了,后面的動作緊接著就發(fā)生了,這時“而”后面就不能停頓,應和后面的動詞連讀。(3)“而”連接詞性相同的兩個詞語(即兩個名詞、兩個動詞、兩個形容詞),表示并列,可譯為“而且”“又”“和”或不譯,這時“而”后不應該停頓。(4)“而”表示遞進關系,可譯為“而且”“并且”“就”或不譯,這時“而”后不能停頓。
中國的拱橋的歷史可追溯到東漢時期,至今已有一千八百多年。中國的拱橋別具一格,造型優(yōu)美,曲線圓潤,形式多樣,世界罕見。拱橋按照建筑材料分為石拱橋、磚拱橋和木拱橋,其中較為常見的是石拱橋。拱橋又分為單拱、雙拱、多拱,拱的多少根據河面的寬度而定。多拱橋一般正中間的拱較大,兩邊的拱略小。根據拱的形狀,又分五邊、半圓、尖拱、坦拱。橋面上鋪板,橋邊有欄桿。單孔拱橋的拱形呈拋物線的形狀,如北京頤和園的漢白玉石橋玉帶橋。多孔拱橋適于跨度較大的寬廣水面,常見的多為三、五、七孔,以奇數為多,偶數較少。當多孔拱橋某個孔的主拱受荷時,能通過橋墩的變形或拱上結構的作用把荷載由近及遠地傳遞到其他孔主拱上去,這樣的拱橋稱為連續(xù)拱橋,簡稱“聯(lián)拱”。如建于唐代元和年間的古橋蘇州寶帶橋,橋下共有53個孔相連,橋孔之多,結構之精巧,為中外建橋史上所罕見。
3.歸納主旨本文通過描寫范進參加鄉(xiāng)試中了舉人一事,運用夸張的手法刻畫了他為科舉考試喜極而瘋的形象,用岳丈在范進中舉前后的極其鮮明的肢體動作和言語表情,以及中舉后鄰居對他的前呼后擁和鄉(xiāng)紳贈屋等行為,刻畫了一個趨炎附勢、熱衷仕途、好官名利祿的封建知識分子形象,并且譴責了世態(tài)炎涼的可恥的社會風氣,對當時的社會及其陰暗面進行了辛辣的諷刺?!驹O計意圖】本板塊研讀品析了文本中的若干次要人物,引導學生理解次要人物的作用,體會本文側面烘托的寫法,揭示社會環(huán)境,點明范進悲劇的必然性,進一步挖掘本文的主旨,使學生理解文本深刻的現(xiàn)實意義。結束語:范進,一個讓人啼笑皆非的人物,他卑微可憐,熱衷科舉,丑態(tài)百出。文章塑造這個下層知識分子的典型形象,深刻揭露并辛辣地諷刺了封建科舉制度,揭露了封建科舉制度的腐朽及其對讀書人的腐蝕和毒害。如今,科舉制度早已被廢除,我們有著公平的人才選拔方式,希望同學們可以珍惜每一個機會,好好努力,實現(xiàn)自己的理想抱負?!景鍟O計】
(二)在三維數字上見真章。結合全區(qū)“三抓三促”行動,進一步強化“三維數字社會服務管理系統(tǒng)”服務功能,全面做好12345政務服務便民熱線群眾訴求辦理工作,對首次辦理的訴求、二次辦理的訴求、需要延期辦理的訴求,分門別類進行答復,嚴格辦理時限,確保群眾訴求辦理“零逾期”。同時,為提高網民留言辦理質量,針對留言答復工作中存在問題,進一步自查自糾、分析原因、補齊漏洞、強化弱項,確保群眾各類訴求得到有效解決。(三)在政務公開上抓實效。為全面提高政務公開質量,充分發(fā)揮政策宣傳、民心溝通、便民利民的作用,進一步拓寬網站、新媒體等多種渠道,加大信息公開力度,不斷增強工作主動性和自覺性。同時以政務信息公開、領導決策、服務人民群眾信息需求為導向,增強政務公開的透明度,努力營造“以公開促公正、以公開立公信”良好氛圍。
針對我校實情我們克服了場地小、器材少、上課班級人數多的眾多不利因素,體育組制訂了體育教師場地器材安排表,體育教師出操安全值勤表,從思想上組織上確保安全措施責任到人。教學過程中杜絕安全事故的發(fā)生。六、多方努力,齊抓共管,做好《學生體質健康標準》的測試、登記、上報工作《學生體質健康標準》是促進學生體質健康發(fā)展、激勵學生積極進行身體鍛煉的教育手段,是學生體質健康的個體評價標準,是《國家體育鍛煉標準》在學校的具體實施,也是學生畢業(yè)的基本條件之一。為順利完成學年度體育《標準》測試工作,提高我校體育《標準》成績,學校在初期就制定了學?!扼w質健康標準》測試計劃,要求各班級認真開展《標準》的訓練和測試工作。在副校長xx的領導下,由體育組組長牽頭,多方努力,齊抓共管,共同組織實施,高要求、高質量地完成了《學生體質健康標準》的測試、登記、數據錄入及上報工作。