教師姓名 課程名稱數學班 級 授課日期 授課順序 章節(jié)名稱§2.1 不等式的基本性質教 學 目 標知識目標:1、理解不等式的概念 2、掌握不等式的基本性質 技能目標:1、會比較兩個數的大小 2、會用做差法比較兩個整式的大小 情感目標:體會不等式在日常生活中的應用,感受數學的有用性教學 重點 和 難點 重點: 不等式的概念和基本性質 難點: 1、會比較兩個整式的大小 2、能根據應用題的表述,列出相應的表達式教 學 資 源《數學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.1課后記
課題序號6-3授課形式講授與練習課題名稱等比數列課時2教學 目標知識 目標理解并掌握等比數列的概念,掌握并能應用等比數列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質 目標通過對等比數列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結的科學思維習慣和嚴謹的學習態(tài)度。教學 重點等比數列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數列的通項公式與求和公式變式運用。教學內容 調整無學生知識與 能力準備數列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核
課程名稱數學課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標群體14級五高班教學環(huán)境教室學習目標知識目標: (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標: 正確分析問題的能力 制造業(yè)通用能力目標: 正確分析問題的能力學習重點直線的斜率公式的應用.學習難點直線的斜率概念和公式的理解.教法、學法講授、分析、討論、引導、提問教學媒體黑板、粉筆
教師姓名 課程名稱數學班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學 目 標知識目標:1、理解一元二次不等式和一元二次方程以及二次函數之間的關系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數圖像的對應 技能目標:1、會解一元二次方程 2、會畫二次函數的圖像 3、能結合圖像寫出一元二次不等式的解集 情感目標:體會知識之間的相互關聯(lián)性,體會數形結合思想的重要性教學 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數的關系 難點: 1、將一元二次不等式和一元二次方程以及二次函數聯(lián)系起來 2、在函數圖像上正確的找到解集對應的部分教 學 資 源《數學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.3課后記本節(jié)課內容是比較重要的,是一元二次方程、一元二次函數、一元二次不等式的結合,相關知識點融會貫通,數形結合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學生自行推出結論。
教師姓名 課程名稱數學班 級 授課日期 授課順序 章節(jié)名稱§2.4 含絕對值的不等式教 學 目 標知識目標:1、理解絕對值的幾何意義 2、掌握簡單的含絕對值不等式的解法 3、掌握含絕對值不等式的等價形式 技能目標:1、會解形如|ax+b|>c或|ax+b|<c的絕對值不等式 情感目標:通過學習,體會數形結合、整體代換及等價轉換的數學思想方法教學 重點 和 難點重點: 1、絕對值的幾何意義 2、基本絕對值不等式|x|>a或|x|<a的解 難點: 1、去絕對值符號后不等式與原不等式保持等價性教 學 資 源《數學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.4課后記不等式的基本性質是初中就學習過的內容,分式不等式的解法是哦本節(jié)課的一個重點和難點,尤其是不等號另一邊不為0的情況,需要移項,這一點在強調前學生考慮不到,因此解題錯誤多。區(qū)間是個新內容,學生往往將連續(xù)的正數寫作一個區(qū)間,這是常見的錯誤,要進行提醒。另外,在均值不等式這里稍微補充了一些內容,引起學生的興趣。
課程分析中專數學課程教學是專業(yè)建設與專業(yè)課程體系改革的一部分,應與專業(yè)課教學融為一體,立足于為專業(yè)課服務,解決實際生活中常見問題,結合中專學生的實際,強調數學的應用性,以滿足學生在今后的工作崗位上的實際應用為主,這也體現了新課標中突出應用性的理念。分段函數的實際應用在本課程中的地位:(1) 函數是中專數學學習的重點和難點,函數的思想貫穿于整個中專數學之中,分段函數在科技和生活的各個領域有著十分廣泛的應用。(2) 本節(jié)所探討學習分段函數在生活生產中的實際問題上應用,培養(yǎng)學生分析與解決問題的能力,養(yǎng)成正確的數學化理性思維的同時,形成一種意識,即數學“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學計劃,函數的實際應用舉例內容安排在第三章函數的最后一部分講解。本節(jié)內容是在學生熟知函數的概念,表示方法和對函數性質有一定了解的基礎上研究分段函數,同時深化學生對函數概念的理解和認識,也為接下來學習指數函數和對數函數作了良好鋪墊。根據13級學生實際情況,由生活生產中的實際問題入手,求得分段函數此部分知識以學生生活常識為背景,可以引導學生分析得出。
課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質和推論,會應用定理和推論解釋生活中的一些現象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當的符號表示點、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差
【教學目標】1. 理解數列的通項公式的意義,能根據通項公式寫出數列的任意一項,以及根據其前幾項寫出它的一個通項公式.2. 了解數列的遞推公式,會根據數列的遞推公式寫出前幾項.3.培養(yǎng)學生積極參與、大膽探索的精神,培養(yǎng)學生的觀察、分析、歸納的能力.教學重點 數列的通項公式及其應用.教學難點 根據數列的前幾項寫出滿足條件的數列的一個通項公式.教學方法 本節(jié)課主要采用例題解決法.通過列舉實例,進一步研究數列的項與序號之間的關系.通過三類題目,使學生深刻理解數列通項公式的意義,為以后學習等差數列與等比數列打下基礎.【教學過程】 環(huán)節(jié)教學內容師生互動設計意圖導 入⒈數列的定義 按一定次序排列的一列數叫做數列. 注意:(1)數列中的數是按一定次序排列的; (2)同一個數在數列中可以重復出現. 2. 數列的一般形式 數列a1,a2,a3,…,an,…,可記作{ an }. 3. 數列的通項公式: 如果數列{ an }的第n項an與n之間的關系可以用一個公式來表示,那么這個公式就叫做這個數列的通項公式. 教師引導學生復習. 為學生進一步理解通項公式,應用通項公式解決實際問題做好準備.
系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數2課時授課周數第一周授課日期2012.2.15授課地點 教室課題第六章數列分課題§6.2 等差數列教學目標1. 理解等差數列的概念,掌握等差數列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數列的概念和通項公式解決問題. 3.等差數列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數列的概念及其通項公式. 教學難點等差數列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數列的定義? 答: 2. 數列的通項公式? 答: 板書設計 §6.2.1等差數列的概念 1. 1.等差數列的定義 公差:d 2.常數列 3.等差數列的通項公式 an=a1+(n-1)d. 等差數列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.
授課 日期 班級16高造價 課題: §6.3等比數列 教學目的要求: 1.理解等比數列的概念,能根據定義判斷或證明一個數列是等比數列;2.探索并掌握等比數列的通項公式; 3.掌握等比數列前 n 項和公式及推導過程,能用公式求相關參數; 教學重點、難點:運用等比數列的通項公式求相關參數 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》 授課執(zhí)行情況及分析: 板書設計或授課提綱 §6.3等比數列 1.等比數列的概念 (學生板書區(qū)) 2. 等比數列的通項公式 3.等比數列的求和公式
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(二) *創(chuàng)設情境 興趣導入 【問題】 平面內兩條既不重合又不平行的直線肯定相交.如何求交點的坐標呢? 圖8-12 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 *動腦思考 探索新知 如圖8-12所示,兩條相交直線的交點,既在上,又在上.所以的坐標是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點的坐標. 觀察圖8-13,直線、相交于點P,如果不研究終邊相同的角,共形成四個正角,分別為、、、,其中與,與為對頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當兩條直線平行或重合時,兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當直線與直線的夾角為直角時稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說明 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 思考 理解 思考 理解 記憶 帶領 學生 分析 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F2的合力F合,由力的平衡原理知,F應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F與F1間的夾角是180°–33°=147°. 答:F約為191N,F與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數. *創(chuàng)設情境 興趣導入 與正弦函數圖像的做法類似,可以用“五點法”作出正弦型函數的圖像.正弦型函數的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數在一個周期內的簡圖. 分析 函數與函數的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數 叫做二項式系數,第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數:二項展開式共(二項式的指數+1)項;指數:二項展開式各項的第一字母依次降冪(其冪指數等于相應二項式系數的下標與上標的差),第二字母依次升冪(其冪指數等于二項式系數的上標),并且每一項中兩個字母的系數之和均等于二項式的指數;系數:各項的二項式系數下標等于二項式指數;上標等于該項的項數減去1(或等于第二字母的冪指數;2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數,若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數”,它是解決組合多項式問題的原始依據.又注意到在的二項展開式中,若將各項中組合數以外的因子視為這一組合數的系數,則易見展開式中各組合數的系數依次成等比數列.因此,解決組合數的系數依次成等比數列的求值或證明問題,二項式公式也是不可或缺的理論依據.
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數的自變量 隨機變量 連續(xù)型隨機變量 函數可以列表 X123456p 2 4 6 8 10 12
授課 日期 班級16高造價 課題: §10.1 計數原理 教學目的要求: 1.掌握分類計數原理與分步計數原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別
課程課題隨機事件和概率授課教師李丹丹學時數2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質量.得到下面的數據(如表10-6所示): 蘋果編號12345678910質量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數據,就可以估計出這批蘋果的平均質量及蘋果的大小是否均勻. 介紹 質疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質量是研究對象的總體,每個蘋果的質量是研究的個體. 講解 說明 引領 分析 理解 記憶 帶領 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數學期末考試成績是總體,每一個學生的數學期末考試成績是個體. 【試一試】 我們經常用燈泡的使用壽命來衡量燈炮的質量.指出在鑒定一批燈泡的質量中的總體與個體. 說明 強調 引領 觀察 思考 主動 求解 通過例題進一步領會 35
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設情境 興趣導入 【知識回顧】 初中我們曾經學習過頻數分布圖和頻數分布表,利用它們可以清楚地看到數據分布在各個組內的個數. 【知識鞏固】 例1 某工廠從去年全年生產某種零件的日產記錄(件)中隨機抽取30份,得到以下數據: 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數據.其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數據分為6組. 列出頻數分布表 【小提示】 設定分點數值時需要考慮分點值不要與樣本數據重合. 分 組頻 數 累 計頻 數340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質疑 引領 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 各組內數據的個數,叫做該組的頻數.每組的頻數與全體數據的個數之比叫做該組的頻率. 計算上面頻數分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數據分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數值上等于對應矩形的面積. 【想一想】 各小矩形的面積之和應該等于1.為什么呢? 【新知識】 圖10-4顯示,日產量為344~346件的天數最多,其頻率等于該矩形的面積,即 . 根據樣本的數據,可以推測,去年的生產這種零件情況:去年約有的天數日產量為344~346件. 頻率分布直方圖可以直觀地反映樣本數據的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當,這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當的抽樣方法得到樣本數據; (2) 計算數據最大值和最小值、確定組距和組數,確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數據的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領 分析 仔細 分析 關鍵 語句 觀察 理解 記憶 帶領 學生 分析 25