首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點,查漏補(bǔ)缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.三、課堂小結(jié):請學(xué)生總結(jié):解直角三角形時,運用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時,常常使用計算器幫助我們處理比較復(fù)雜的計算。
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
1.培養(yǎng)學(xué)習(xí)語文的興趣,感悟生活處處皆語文的道理。2.了解招牌、廣告詞和對聯(lián)。3.按興趣分組,制定活動計劃。 一、導(dǎo)入新課師:同學(xué)們,我們學(xué)習(xí)語文都有哪些途徑呢?(生:課本、課堂。)除此之外,老師認(rèn)為還可以通過以下途徑來學(xué)習(xí)語文。從媒體中學(xué)語文——網(wǎng)絡(luò)用語、手機(jī)短信、歌詞等;從名字中學(xué)語文——人名、地名等;向群眾學(xué)語文——俗語、諺語、歇后語等;從傳統(tǒng)文化中學(xué)語文——對聯(lián)……從廣告中學(xué)語文——商業(yè)廣告、公益廣告…… 師:無論是讀書看報、與人聊天,還是聽相聲、看電視、逛商場,只要留心觀察,隨時注意語言現(xiàn)象,總會發(fā)現(xiàn)與語文有關(guān)的問題。書本上、電視上、報紙上滿是漢字。大街上的招牌、廣告、門對等全都充滿語文氣息。語文學(xué)習(xí)不能局限于課堂與書本,生活處處有語文。今天,我們就來開展綜合性學(xué)習(xí)活動“我的語文生活”,看看怎樣在生活中學(xué)習(xí)語文。
本環(huán)節(jié)旨在通過展示、評價踐行“孝親敬老”的活動成果,深化 “孝”的境界,培養(yǎng)學(xué)生回報家人、關(guān)愛他人的美德。展示過程中,學(xué)生的語言表達(dá)能力、誦讀能力、搜集和整理資料的能力、寫作能力得到了提升,同時也增強(qiáng)了自信心。二、談“孝”心1.在這為期一周的踐行“孝”的活動中,你有哪些體會和感受?請與大家分享。(生小組內(nèi)交流,小組代表發(fā)言)預(yù)設(shè) 示例一:在這次踐行“孝”的活動中,我做了許多表達(dá)孝心的事情,從中體會到了父母工作的艱辛、賺錢的不易,更能體諒他們了。我也了解到平時我不經(jīng)意說的話傷害了父母,讓父母擔(dān)憂難過了?,F(xiàn)在我與父母之間的關(guān)系變得更加融洽,父母對我的一些事情也能夠理解了,我發(fā)現(xiàn)只要我們對父母多一些尊重和理解,他們就會非常開心。示例二:我在采訪爺爺奶奶時,了解到祖輩們的人生經(jīng)歷和具體事跡,被他們身上的一些精神品質(zhì)所感動,更加欽佩他們了。這次的采訪活動增強(qiáng)了我與家人之間的溝通,增進(jìn)了我與家人之間的情感交流,也讓我進(jìn)一步了解了我們家族的一些歷史,讓我有了為家族努力奮斗的使命感。
請同學(xué)們閱讀教材P133虛線框內(nèi)的內(nèi)容,根據(jù)要求選擇某一新聞事件,開展時事討論,積極發(fā)表看法。提示:學(xué)生圍繞事件展開討論,積極發(fā)言,認(rèn)真聽取同學(xué)的意見,討論時注意遵守之前制定的“班級議事規(guī)則”。(全班討論,師總結(jié))【設(shè)計意圖】此環(huán)節(jié)通過開展班級討論活動,制定貼近學(xué)生生活的“班級議事規(guī)則”,將學(xué)習(xí)的與“和”相關(guān)的知識引入實踐生活,培養(yǎng)學(xué)生運用知識指導(dǎo)生活實踐的綜合能力。五、以“和”為文,總結(jié)收獲師:同學(xué)們,通過本次綜合性學(xué)習(xí)活動,我們知道了“以和為貴”不僅是為人處世的準(zhǔn)繩,也是從政治國的法寶,是處理國際關(guān)系的原則,是創(chuàng)建和諧社會的前提條件。通過這次活動,你對中國文化中的“和”一定也有了許多的認(rèn)識和理解吧!任選一個角度,寫一篇不少于600字的作文,談?wù)勀愕氖斋@。
一是縮小頁邊距和行間距,縮小字號。正式文件一般對字號、間距有嚴(yán)格的要求,但是在非正式文件里,可適當(dāng)縮小頁邊距和行間距,縮小字號??伞吧享斕?,下連地,兩邊夠齊”,對于字號,以看清為宜。二是紙張雙面打印、復(fù)印。紙張雙面打印、復(fù)印既可以減少費用,又可以節(jié)能減排。如果全國10%的打印、復(fù)印做到這一點,那么每年可減少耗紙約5.1萬噸,節(jié)能6.4萬噸標(biāo)準(zhǔn)煤,相應(yīng)減排二氧化碳16.4萬噸。三是打印時能不加粗、不用黑體的就盡量不用,能節(jié)省墨粉或鉛粉。此外,能夠用電腦網(wǎng)絡(luò)傳遞的文件就盡量在網(wǎng)絡(luò)上傳遞,比如電子郵件、單位內(nèi)部網(wǎng)絡(luò)等,這樣下來也可以節(jié)約不少紙張。(選自《低碳校園——讓我們的學(xué)校更美好》,天津人民出版社2013年版)(學(xué)生圍繞各自任務(wù),課外搜集制作宣傳材料,時間為一周。)【設(shè)計意圖】本環(huán)節(jié)先從探討自身在低碳生活中力所能及的事情,讓學(xué)生切實認(rèn)識到低碳生活就在日常的一舉一動中。然后圍繞主題分組,并保證足夠的時間,讓學(xué)生去收集整理資料,落實任務(wù),使學(xué)生能真正成為低碳的倡導(dǎo)者和踐行者。
解說詞:畫卷上的竹子,在石縫中挺然而立,堅韌不拔,遇風(fēng)不倒。鄭板橋先生借竹抒發(fā)了自己的灑脫與豁達(dá),表現(xiàn)了他勇敢面對現(xiàn)實、絕不屈服于挫折的品性,令竹子人格化了。此時,“詩是無形畫,畫是有形詩”。4.聲情并茂誦古詩(播放相關(guān)的主題圖片和音樂,盡量讓詩歌和音樂、畫面相融合)主持人:詩除了追求意境的圖畫美之外,還特別注重節(jié)奏和韻律,具有音樂美。我們理解了詩中的情愫后,便可以通過朗讀來詮釋這種種情愫,或低聲絮語,或慷慨悲吟,或溫情述說……請大家選擇自己最喜歡的一首詩詞或一小節(jié)詩歌,用你認(rèn)為最貼切的情感和方式朗讀,并說出這樣處理的原因,或講述你與此詩有關(guān)的故事。朗讀示例:無言/獨上西樓,月/如鉤,寂寞梧桐/深院/鎖/清秋。剪不斷,理還亂,是離愁,別是/一般滋味/在心頭。解說詞:此詞是南唐后主李煜被囚于宋時所作,表達(dá)了他離鄉(xiāng)去國的錐心之痛。朗讀時要表現(xiàn)出那種深切的故國之思、亡國之恨。
(一)完成校本部和蓮溪校區(qū)的招生計劃。暑假期間,充分利用微信公眾號、微信朋友圈、視頻號、抖音等各類宣傳媒介,對招生進(jìn)行宣傳報道,營造良好的輿論氛圍。開放咨詢渠道,嚴(yán)格按照招生方案進(jìn)行招生,確保圓滿完成招生計劃。(二)繼續(xù)招納賢才,進(jìn)一步充實教師隊伍。下半年將繼續(xù)協(xié)助人社局、教體局開展校園招聘和社會招聘,廣納賢才,為學(xué)校的可持續(xù)發(fā)展菱定基礎(chǔ)。(三)持續(xù)規(guī)范教學(xué)常規(guī),提高教育教學(xué)質(zhì)量一是抓好教學(xué)常規(guī),教學(xué)常規(guī)的中心環(huán)節(jié)在課堂,力求課堂效果最大化。二是扎實做好尖子生培養(yǎng)工作。在尖子生培養(yǎng)方面,做到“精心”、“精品”,致力于尋求尖子生培養(yǎng)的良方。
六、“保護(hù)呼倫湖助力美麗呼倫貝爾市”生態(tài)文明踐行活動為持續(xù)做好呼倫湖流域的生態(tài)環(huán)境保護(hù)治理工作。XX組織開展“保護(hù)呼倫湖助力美麗呼倫貝爾”生態(tài)文明實踐行動。此次全旗共有600余名干部職工統(tǒng)一行動,對呼倫湖流域XX境內(nèi)生產(chǎn)生活垃圾、建筑垃圾及廢棄網(wǎng)圍欄進(jìn)行了集中清理,清掃垃圾500余袋,使呼倫湖及周邊地區(qū)環(huán)境得到了明顯改善。2024年下半年工作計劃1、為農(nóng)機(jī)安全生產(chǎn)打基礎(chǔ),舉辦農(nóng)機(jī)駕駛員培訓(xùn)班。2、以人為本推進(jìn)科技興牧,組織農(nóng)牧民參加高素質(zhì)牧民培訓(xùn)班。3、增強(qiáng)基層科技技術(shù)力量,組織基層農(nóng)技人員下鄉(xiāng)開展教育培訓(xùn)。4、加強(qiáng)科技知識宣傳、培訓(xùn),發(fā)揮好科技特派員服務(wù)農(nóng)牧民作用。5、認(rèn)真落實農(nóng)機(jī)構(gòu)置補(bǔ)貼項目資金,規(guī)范操作嚴(yán)格管理。6、嚴(yán)格農(nóng)機(jī)牌、證、照管理,杜絕無證駕駛,確保農(nóng)機(jī)安全生產(chǎn)。7、完成上級交辦的其他工作。
三、說教學(xué)目標(biāo)教學(xué)目標(biāo)1.自主學(xué)習(xí)字詞,會認(rèn)“妖、矩”等8個生字,會寫“介、紹”等13個生字,理解字義,識記字形。正確讀寫“介紹、神仙、妖怪、每逢、規(guī)矩、劈面”等詞語。2.自讀感悟,理解課文內(nèi)容,感受童話的奇妙。3.根據(jù)已有內(nèi)容創(chuàng)編故事。教學(xué)重難點教學(xué)重點:深入理解課文內(nèi)容,感受童話的奇妙。教學(xué)難點:根據(jù)已有內(nèi)容創(chuàng)編故事。四、說教法、學(xué)法1.鼓勵學(xué)生對文本進(jìn)行個性化、開放性閱讀理解,而不是想著怎樣將學(xué)生的認(rèn)識以及對文本的理解統(tǒng)一到自己的教學(xué)設(shè)計之中。2.學(xué)生充分自讀課文,在理解的基礎(chǔ)上談感受、體會以及對文本的理解,充分體現(xiàn)“以學(xué)生為主體”的理念。