提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

(新)部編人教版四年級上冊《延安,我把你追尋》說課稿(二)

  • 高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動探究型》教案

    高中思想政治人教版必修四《哲學(xué)史上的偉大變革活動探究型》教案

    一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對學(xué)生來講,將有助于他們正確認識馬克思主義,運用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強的現(xiàn)實指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標1.馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進而運用馬克思主義哲學(xué)的基本觀點分析和解決生活實踐中的問題。3.實踐的觀點是馬克思主義哲學(xué)的首要和基本的觀點,培養(yǎng)學(xué)生在實踐中分析問題和解決問題的能力,進而培養(yǎng)學(xué)生在實踐活動中的科學(xué)探索精神和革命批判精神。

  • (校長稿)國旗下講話:校園安全每一天

    (校長稿)國旗下講話:校園安全每一天

    同學(xué)們,我們每個孩子都是父母的至愛,每個孩子都是家庭的未來,校園安全與我們每個師生密切相關(guān)。它關(guān)系到我們的學(xué)生能否健康地成長,能否順利地完成學(xué)業(yè);它關(guān)系到我們的老師能否在一個寧靜、安全的環(huán)境中教書育人。我國中小學(xué)生的安全狀況究竟如何呢?在這里,我給大家舉幾個案例:XX年的6月23日上午,在蘇州第四中學(xué),兩名學(xué)生因瑣事發(fā)生不愉快,一學(xué)生在廁所將同班同學(xué)刺傷,被刺學(xué)生最終因為失血過多導(dǎo)致死亡。XX年10月16日晚,XX省XX縣雷鳴中心小學(xué)4名六年級學(xué)生駕駛一輛兩輪摩托車在途中撞到路邊路標,造成3人當場死亡,1人重傷的重大交通事故。XX年10月XX省XX縣廣納鎮(zhèn)中心校的小學(xué)生在教學(xué)樓樓梯里發(fā)生擁擠踐踏大安全事故,造成7名小學(xué)生死亡,37名小學(xué)生受傷。XX年9月,XX市兩名民工子弟孩子逃學(xué)到護城河婁門橋下私自游泳,十四五歲的少年就這樣再也看不到父母、老師和同學(xué)。

  • 關(guān)于校園安全的國旗下講話(老師稿)

    關(guān)于校園安全的國旗下講話(老師稿)

    老師們、同學(xué)們:校園安全是與我們每一位師生密切相關(guān),它關(guān)系到同學(xué)們能否健康成長,能否順利完成學(xué)業(yè);也關(guān)系著我們老師能否在一個安全的環(huán)境中教書育人,因此,我們必須清醒地認識到“安全無小事”。在我們的身邊,在日常生活中,隱藏著許多已知或未知的危險。生命是脆弱的,尤其是我們這些未成年人,經(jīng)常會受到意外傷害。如何才能避免受到傷害呢?這就需要我們從小掌握安全自護自救知識,人人關(guān)注安全,時時處處注意安全,避免意外事故的發(fā)生。注意安全,我們首先要提高的安全意識,認識到安全是件頭等重要的大事,隨時注意交通安全、勞動安全、飲食衛(wèi)生安全、課外活動安全等等,平時經(jīng)常提醒自己哪些事情該做,哪些事情不該做,在做每一件事情之前,都要預(yù)料到可能出現(xiàn)的危險或者可能造成的后果,讓自己多一份機智和警惕,增加自己的生活經(jīng)驗,時刻提醒自己注意安全!注意安全,更重要的是我們要不斷規(guī)范自己的行為,在學(xué)校里遵守學(xué)校紀律,在社會上遵守公共秩序。比如說,我們每天上學(xué)、放學(xué)都要穿行在車水馬龍的街道上,可是,有的同學(xué)不注意往來車輛,當前后有車時,不顧一切地猛跑穿過馬路;

  • 雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼担蠼乜贏BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 四川省內(nèi)江市2016年中考歷史真題試題(含解析)

    四川省內(nèi)江市2016年中考歷史真題試題(含解析)

    材料一:法令規(guī)定農(nóng)奴不能有人身自由,地主不得買賣農(nóng)奴,不得干涉他們的婚姻和家庭生活;農(nóng)奴有占有動產(chǎn)和不動產(chǎn)、從事工商業(yè)活動等權(quán)利;農(nóng)奴解放時,可從地主那里贖買一塊份地.從法令頒布到1866年,俄羅斯地區(qū)先后有2000多萬農(nóng)奴獲得解放.--摘自川教版《世界歷史》九年級上冊(1)材料一中的法令指的是什么?這一法令使俄國有了怎樣的發(fā)展? 材料二 19世紀70年代處,發(fā)電機、電動機被發(fā)明出來,電力成了帶動及其生產(chǎn)的新能源.隨之電燈、電車、電鉆等眾多的電氣產(chǎn)品也先后問世.在遠距離傳輸電力的方法解決以后,電力得到了廣泛應(yīng)用,電動機逐漸取代了蒸汽機.--摘自川教版《世界歷史》九年級上冊(2)材料為反映人類跨入了什么時代?其標志是什么?

  • 四川省成都市2016年中考歷史真題試題(含答案)

    四川省成都市2016年中考歷史真題試題(含答案)

    材料二 20世紀80年代初,大陸的統(tǒng)一觀已經(jīng)有了創(chuàng)新性的發(fā)展,不完全要求絕對的“政治上的服從”和制度上的一致,首創(chuàng)了一個國家中允許存在不同社會制度的理論。這一理論在香港和澳門獲得了成功的實踐?!獡?jù)許士鈴《國家統(tǒng)一是中華民族歷史形成的國家觀》⑵材料二中,大陸首創(chuàng)的“一個國家中允許存在不同社會制度的理論”是指什么(2分)分析這一理論提出的依據(jù)(2分)。 材料三 1861年2月4日,美國南部諸州退出聯(lián)邦,成立南部同盟政權(quán),定名為“美利堅諸州同盟”。3月1日,又通過了永久憲法?!獡?jù)李龍、魏臘云《<中國反分裂國家法>與美國<反脫離聯(lián)邦法>的比較研究》(3)材料三反映了什么歷史現(xiàn)象(2分)?對此,美國聯(lián)邦政府采取了哪些應(yīng)對措施(3分)

  • 四川省樂山市2017年中考語文真題試題(含解析)

    四川省樂山市2017年中考語文真題試題(含解析)

    方干,字雄飛,桐廬人。幼有清才,散拙①無營務(wù)。大中中,舉進士不第,隱居鏡湖中。湖北有茅齋,湖西有松島。每月明風清,攜稚子鄰叟,輕舟往返,甚愜素心。所住水門閟②,一草一花,俱能留客。家貧,蓄古琴,行吟醉臥以自娛。徐凝初有詩名,一見干器之,遂相師友,因授格律。干有贈凝詩,云“把得新詩草里論”。時謂反語為村里老,疑干譏誚,非也。王大夫廉問浙東,禮邀干至,嘉其操,將薦于朝,托吳融草表。行有日,王公以疾逝去,事不果成。干早歲偕計③,往來兩京,公卿好事者爭延納,名竟不入手,遂歸,無復(fù)榮辱之念。浙中凡有園林名勝,輒造主人,留題幾遍。初李頻學(xué)干為詩,頻及第,詩僧清越賀云:“弟子已折桂,先生猶灌園?!毕掏┳?。門人相與論德謀跡,謚曰玄英。樂安孫郃等,綴其遺詩三百七十余篇,為十卷。

  • 四川省眉山市2017年中考語文真題試題(含解析)

    四川省眉山市2017年中考語文真題試題(含解析)

    ①人人在童年,都是時間的富翁。我有時待在家里悶得慌,就不免要到離家很近的那個街口,去看快手劉變戲法。②快手劉是個擺攤賣糖的大胖漢子。隨身背著的綠色小木箱,上面插著一排排廉價的棒糖。他變戲法是為吸引孩子們來買糖。戲法很簡單,俗稱“小碗扣球”。一塊絹子似的黃布鋪在地上,兩只白瓷小茶碗,四個滴溜溜的大紅玻璃球兒。他兩手各拿一只茶碗,你明明看見每只碗下邊扣著兩個紅球兒,你連眼皮都沒眨一下,只見他一邊叫天喊地,東指一下手,西吹一口氣,嘿!四個球兒竟然全都跑到一只茶碗下邊去了。

  • 四川省巴中市2017年中考語文真題試題(含答案)

    四川省巴中市2017年中考語文真題試題(含答案)

    江城子?密州出獵蘇軾老夫聊發(fā)少年狂, 左牽黃, 右擎蒼, 錦帽貂裘, 千騎卷平岡。 為報傾城隨太守, 親射虎, 看孫郎。酒酣胸膽尚開張。 鬢微霜, 又何妨! 持節(jié)云中, 何日遣馮唐? 會挽雕弓如滿月, 西北望, 射天狼。

  • 四川省巴中市2017年中考語文真題試題(含解析)

    四川省巴中市2017年中考語文真題試題(含解析)

    江城子?密州出獵蘇軾老夫聊發(fā)少年狂, 左牽黃, 右擎蒼, 錦帽貂裘, 千騎卷平岡。 為報傾城隨太守, 親射虎, 看孫郎。酒酣胸膽尚開張。 鬢微霜, 又何妨! 持節(jié)云中, 何日遣馮唐? 會挽雕弓如滿月, 西北望, 射天狼。(1)這首詞的詞牌名是   ,從本詞的題材及語言風格看,是一首   詞。(2)詞的下片中用遣馮唐的典故表達了什么意思?

  • 四川省綿陽市2017年中考語文真題試題(含答案)

    四川省綿陽市2017年中考語文真題試題(含答案)

    【材料一】西周時期,周公以《無逸》告誡后輩子孫不要因貪圖享樂而荒廢政務(wù);春秋時期,孔子以“不學(xué)禮,無以立”訓(xùn)誡兒子。這兩個事例歷來被人們認為是我國家規(guī)文化的源頭?!静牧隙抗糯乙?guī)雖然來自不同作者的生活經(jīng)驗和文化追求,但內(nèi)容都以家庭倫理為主體,重視齊家善鄰和修身養(yǎng)德,如司馬光在《溫公家范》中強調(diào)“以義方訓(xùn)其子,以禮法齊其家”,陸九韶在《陸氏家訓(xùn)》中主張“人之愛子,當教之以孝悌忠信”?!静牧先俊耙粫r之語,可以守之百世;一家之語,可以共之天下”,我國歷史上流傳下來的家規(guī),除對家族的繁衍發(fā)展起到了重要保障作用外,還是社會教育的一種獨特形式,為社會提供家庭教育的范本和楷模。

  • 四川省綿陽市2016年中考語文真題試題(含解析)

    四川省綿陽市2016年中考語文真題試題(含解析)

    微信是一種即時聊天工具,比起QQ,它更方便、更快捷,功能更強大。每天我們在微信中醒來,在微信中睡去,我們舍不得錯過每一條朋友圈的新鮮事。我們無論飯前飯后都要照相,刮風下雨都要自拍,看到名牌就要合影……

上一頁123...293294295296297298299300301302303304下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!