教學效果:部分學生能舉一反三,較好地掌握分式方程及其應(yīng)用題的有關(guān)知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習四、教學反思數(shù)學來源于生活,并應(yīng)用于生活,讓學生用數(shù)學的眼光觀察生活,除了用所學的數(shù)學知識解決一些生活問題外,還可以從數(shù)學的角度來解釋生活中的一些現(xiàn)象,面向生活是學生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學生熟悉的實例,如:學生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學生真切地理解數(shù)學來源于生活這一事實。有些學生對應(yīng)用題有一種心有余悸的感覺,其關(guān)鍵是面對應(yīng)用題不知怎樣分析、怎樣找到等量關(guān)系。在教學中,如果采用列表的方法可幫助學生審題、找到等量關(guān)系,從而學會分析問題??赡軐W生最初并不適應(yīng)這種做法,可采用分步走的方法,首先,讓學生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習中讓學生悟出解決問題的竅門,學會舉一反三,最后達到能獨立解決問題的目的。
解1:設(shè)該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設(shè)該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設(shè)計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
將一個圓分成三個大小相同的扇形,你能計算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴交流設(shè)計意圖:通過引導(dǎo)學生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關(guān)系為后面學習扇形面積公式做鋪墊,體現(xiàn)知識的延續(xù)性。(六)、鞏固練習.如圖,把一圓分成三個扇形,你能求出這三個扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結(jié)學完這節(jié)課你有哪些收獲?設(shè)計意圖:通過小節(jié)讓學生對所學知識進行梳理,使所學知識能合理地納入自身的知識結(jié)構(gòu)。(八) 布置作業(yè):中等學生:P125. 1優(yōu)等生: P125. 2,3我針對學生素質(zhì)的差異設(shè)計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎(chǔ)知識,又使學有余力的學生有所提高,從而達到拔尖和“減負”的目的。
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖是解題的關(guān)鍵.三、板書設(shè)計1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過一段對話設(shè)置疑問,巧設(shè)懸念,激發(fā)起學生獲取知識的求知欲,充分調(diào)動學生學習的積極性,使學生由被動接受知識轉(zhuǎn)為主動學習,從而提高學習效率.然后讓學生自主探究,在教學過程中充分發(fā)揮學生的主動性,讓學生提出猜想.在教學中,教師通過必要的提示指明學生思考問題的方向,在學生提出驗證三角形內(nèi)角和的不同方法時,教師注意讓學生上臺演示自己的操作過程和說明自己的想法,這樣有助于學生接受三角形的內(nèi)角和是180°這一結(jié)論
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
A、B兩碼頭相距140km,一艘輪船在其間航行,順水航行用了7h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順速=靜速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時間”列方程組.三、板書設(shè)計“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學思想方法是數(shù)學學習的靈魂.教學中注意關(guān)注蘊含其中的數(shù)學思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學生的學習興趣,開闊視野,同時也提高學生對數(shù)學思想的認識,提升解題能力.
5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學生學的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學的知識穿插在學與練當中,充分地利用了課堂有限的時間,并且能讓學生邊學邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學生做練習時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應(yīng)該吸取經(jīng)驗教訓,再以后的教學中加以改進。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習中再做些補充,讓學生加深理解。從中我也得到一個教訓,再以后的教學工作中,我還應(yīng)該多學習教學方法,多思考如何歸納知識點,才能更好地幫學生形成一個系統(tǒng)的知識系統(tǒng)!
由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結(jié):活動內(nèi)容:學生歸納總結(jié)本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關(guān)系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調(diào)本課的重點內(nèi)容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關(guān)系.引導(dǎo)學生自己對所學知識和思想方法進行歸納和總結(jié),從而形成自己對數(shù)學知識的理解和解決問題的方法策略.
一、回顧舊知,復(fù)習鋪墊1、上節(jié)課我們學習了一些比例的知識,誰能說一說什么叫做比例?比例的基本性質(zhì)是什么?應(yīng)用比例的基本性質(zhì)可以做什么?2、判斷下面每組中的兩個比是否能組成比例?為什么?6:3和8:4 : 和 :3、這節(jié)課我們繼續(xù)學習有關(guān)比例的知識,學習解比例。(板書課題)二、引導(dǎo)探索,學習新知1、什么叫解比例?我們知道比例共有四項,如果知道其中的任何三項,就可以求出這個比例中的另外一個未知項。求比例中的未知項,叫做解比例。解比例要根據(jù)比例的基本性質(zhì)來解。2、教學例2。(1)把未知項設(shè)為X。解:設(shè)這座模型的高是X米。(2)根據(jù)比例的意義列出比例:X:320=1:10(3)讓學生指出這個比例的外項、內(nèi)項,并說明知道哪三項,求哪一項。根據(jù)比例的基本性質(zhì)可以把它變成什么形式?3x=8×15。這變成了什么?(方程。)教師說明:這樣解比例就變成解方程了,利用以前學過的解方程的方法就可以求出未知數(shù)X的值。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個為正,則另一個就用負表示.理解表中的正負號表示的含義,根據(jù)條件計算出每天的水位即可求解;(2)只要觀察星期日的水位是正負即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學思想是轉(zhuǎn)化思想,即把實際問題轉(zhuǎn)化成數(shù)學問題.探究點二:有理數(shù)的加減混合運算在生活中的其他應(yīng)用
提示:要學會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動畫,情景再現(xiàn).3.學法小結(jié):(1)對較復(fù)雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設(shè)計意圖:生動的情景引入,意在激發(fā)學生的學習興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學法小結(jié),著重強調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學生的興趣,學生參與熱情很高;借助圖表分析,有效地克服了難點,學生基本都能借助圖表分析,在老師的引導(dǎo)下列出方程組。4.變式訓練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗担挥种傥粩?shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。?,試求原來的3位數(shù).
活動目的:(1)通過小組討論活動,讓學生理解坐標系的特點,并能應(yīng)用特點解決問題。(2)培養(yǎng)學生逆向思維的習慣。(3)在小組討論中培養(yǎng)學生勇于探索,團結(jié)協(xié)作的精神。第四環(huán)節(jié):練習隨堂練習 (體現(xiàn)建立直角坐標系的多樣性)(補充)某地為了發(fā)展城市群,在現(xiàn)有的四個中小城市A,B,C,D附近新建機場E,試建立適當?shù)闹苯亲鴺讼?,并寫出各點的坐標。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進步,從知識和能力上兩個方面總結(jié),老師予于肯定和鼓勵。目的:鼓勵學生大膽發(fā)言,敢于表達自己的觀點,同時學生之間可以相互學習,共同提高,老師給予肯定和鼓勵,激發(fā)學生的學習熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習題5.5。B類:完成A類同時,補充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標;(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。
說教學難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學生的年齡和認知特點,教材中“圖形的放大與縮小”從對應(yīng)邊的比相等來進行安排,而對應(yīng)角的不變也是形狀不變必備的條件,是學生體會圖形的相似所必需的。學生在學習的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮?。浚┧晕野选皩W生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應(yīng)邊的比相等,對應(yīng)角不變)”做為本節(jié)課的難點。說教法、學法:通過直觀演示,情景激趣,結(jié)合生活讓學生形成感性認識;引導(dǎo)學生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學習、驗證等過程形成理性認識。教學過程:(略)
Ⅵ.活動與探究某種“15選5”的彩票的獲獎號碼是從1~15這15個數(shù)字小選擇5個數(shù)字(可以重復(fù)),若彩民所選擇的5個數(shù)字恰與獲獎號碼相同,即可獲得特等獎.小明觀察了最近100期獲獎號碼,發(fā)現(xiàn)其中竟有51期有重號(同一期獲獎號碼有2個或2個以上的數(shù)字相同),66期有連號(同一期獲獎號碼中有2個或2個以上的數(shù)字相鄰).他認為獲獎號碼不應(yīng)該有這么多重號和連號,獲獎號碼可能不是隨機產(chǎn)生的,有失公允.小明的觀點有道理嗎?重號的概率大約是多少?利用計算器模擬實驗可以估計重號的概率.[過程]兩人組成一個小組,利用計算器產(chǎn)生1~15之間的隨機數(shù).并記錄下來,每產(chǎn)生5個隨機數(shù)為一次實驗,每組做10次實驗,看看有幾次重號和連號.將全班的數(shù)據(jù)匯總集中起來,就可估計出1~15之間的整數(shù)中隨機抽出5個數(shù)出現(xiàn)重號和連號的概率.
準備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復(fù)摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復(fù)聽到消息的可能性是很大的,當然重復(fù)感染的可能性也是很大的。
在解決問題的過程中,學生使用到了生活中常見的工具——標桿、鏡子等,這些小工具搖身一變就成了學生學習用的學具。使學生感覺到利用身邊的工具完全可以達到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學中創(chuàng)設(shè)良好的學習情境,充分激發(fā)學生求學熱情。當學生的學習投入到教師創(chuàng)設(shè)的學習情境中,就會形成主動尋求知識的內(nèi)在動力。學生在這種學習情境中主動學習到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學習興趣。2、注意培養(yǎng)學生的問題意識。問題解決后,教師應(yīng)讓學生從解決的問題出發(fā),通過對題目的拓展,引導(dǎo)學生用新的思維去再次解決新問題,這樣不僅讓學生掌握了更多的知識,還能讓學生的思維得到升華。3、培養(yǎng)學生自主探索、合作交流的學習方法和習慣。
接著,引導(dǎo)學生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學表達式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應(yīng)高。求證:AD/A/D/=K首先讓學生回憶,證明線段成比例學過哪些方法,接著引導(dǎo)學生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學生能找到含對應(yīng)高和對應(yīng)邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學生口述教師板書規(guī)范的證明過程。接著問學生還有哪些證明方法?同理可證得其他兩邊上的對應(yīng)高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學表達式和證明方法與命題1類似,所以為了提高教學效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導(dǎo)學生課堂練習證明這兩個命題。
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學的實際應(yīng)用。有兩種解題思路:枚舉法和方程法。