師:中國飲食影響別國,就充分說明了世界各地的文化在不斷融合、發(fā)展,但是在這過程中,也會有因文化差異引起的尷尬、矛盾或沖突,你知道該怎么處理嗎 ?案例回放:1. 不接受贊美 =虛偽? 總結:西方人樂于贊美別人,同時也樂于接受別人的贊美。而中國人為了顯示謙恭,常常會“拒絕“他人的贊美。這種“拒絕”會讓老外覺得莫明其妙, 好像你不領他的情似的。2. 要不要付小費 ?在美國給小費是一個很常見的現(xiàn)象。從餐廳吃飯、坐出租車、讓酒店工作 人員幫你拿行李等等,都需要給一定數(shù)額的小費作為給對方勞動的一個認可和補償 . 大部分情況是占你消查數(shù)額的15%左右。當然你可以根據(jù)這家餐廳/ 酒店的高級程度,服務的質量有所調壁。但是不給小費一般是一種不禮貌的行為,而且會讓你成為不受歡迎的客人??偨Y:我們要了解差異,并學會尊重差異。 活動總結:中國文化也在不斷走向世界。請你課后去收集一些類似的報道 .感受多元文化的魅力。
一、說教材(一)教材分析本課是最新部編版《道德與法治》六年級下冊第四單元第9 課。本課首先 明確了國際組織的定義,并介紹了兩種國際組織的劃分標準。接著為學生呈現(xiàn) 了國際奧林匹克委員會、東南亞國家聯(lián)盟、世界銀行、世界衛(wèi)生組織這四個國 際組織的標志以及職責。課文通過圖文并茂的形式讓學生通過畫面與文字感性 地了解國際組織在國際事務中起著重要的作用。(二)教學目標1. 了解什么是國際組織、國際組織的分類及重要作用,培養(yǎng)開放的國際視野。2. 了解聯(lián)合國和世界貿易組織,知道這兩個國際組織在國際政治、經(jīng)濟中 發(fā)展的重要作用,明白中國與國際組織的交流、推動作用。3. 初步掌握收集、整理和運用信息的能力。(三)教學重難點 教學重點:知道國際組織的分類及重要作用,了解聯(lián)合國和世界貿易組織的構成和作用,明白中國與國際組織的相互交流、支持作用。 教學難點:國際組織的分類及重要作用。
一、說教材(一)教材分析本課是最新部編版《道德與法治》六年級下冊第三單元第6課。本單元主要從古代文明的主題出發(fā),引導學生了解人類的文明史是由世界人民共同創(chuàng)造的。中華民族的悠久歷史和燦爛文化的發(fā)祥地是黃河流域和長江流域,在搜集資料及交流中感悟古代勞動者的智慧。同時,在了解世界文化遺產的同時學會珍惜領悟和傳承古代文明遺跡,為中華民族燦爛文化感到自豪。了解各種不同的生活環(huán)境造成了不同的自然景觀,尊重不同的文化并宣傳中國文化。(二)教學目標1.懂得世界各國人民共同創(chuàng)造了人類文明,保護文明世界的文化遺產,形成開放的國際視野。2.初步了解古代早期文明發(fā)祥地;知道古代中國是世界文明發(fā)祥地之一,明白古代中國對人類文明的貢獻,珍視祖國的歷史與文化。3.初步掌握收集、整理和運用信息的能力。
一、說教材(一)教材分析本課是最新部編版《道德與法治》六年級下冊第四單元第10課。教育學生要熱愛和平與世界各國人民友好相處,和平是各國人民的共同愿望,也是當今世界兩大主題之一,在飽受戰(zhàn)爭創(chuàng)傷之后,世界各國人民越來越認識到創(chuàng)造一個和平的環(huán)境,對人類社會的進步和發(fā)展有重要意義,并為之進行了不懈的努力,近年來各國也開始重視對下一代進行熱愛和平的教育。(二)教學目標1.懂得不同民族國家和地區(qū)之間相互尊重,和睦相處的重要意義,培養(yǎng)世界和平與發(fā)展的理念。2.初步了解影響世界歷史發(fā)展的一些重要歷史事件,知道戰(zhàn)爭帶來的傷害,明白和平是世界潮流;知道中國為推動和平做出巨大的貢獻。3.初步掌握收集、整理和運用信息的能力。(三)教學重難點教學重點:知道戰(zhàn)爭帶來的傷害,明白和平是世界潮流;知道中國為推動和平做出巨大的貢獻。教學難點:和平是世界潮流。
一、說教材(一)教材分析本課是最新部編版《道德與法治》六年級下冊第二單元第5 課。本單元主要從地球為人類生活提供了所需要的空間、環(huán)境和資源出發(fā)到人了對環(huán)境的破壞引發(fā)各種自然災害,引導學生從自己身邊可觸可感的資源出發(fā),感知防御自然災害的重要意義,了解自然災害及造成自然災害的原因,樹立環(huán)保意識。通過自己的智慧與創(chuàng)造,改善生活環(huán)境,遵守相關法律法規(guī),共同擔負起愛護地球的責任。本課先從我國發(fā)生的各種自然災害入手,讓學生感知自然災害造成的損失以及造成這些自然災害的緣由,引導學生明白只有加強對環(huán)境的保護才能減少自然災害的發(fā)生。然后聚焦的是如何應對自然災害,樹立防災避險的意識。了解自救自護知識,提高自救自護能力。(二)教學目標1. 具有應對自然災害的能力,保護自己和他人的意識。2. 初步了解我國自然災害的種類、分布及其危害; 知道如何預防自然災害、 災害來臨時保護措施。
一、教材分析:1、地位與作用:《頻率與概率》選自高等教育出版社出版,李廣全、李尚志主編的中等職業(yè)教育課程改革國家規(guī)劃新教材《數(shù)學》(基礎模塊)下冊,第十章第二節(jié)的內容。本節(jié)課的最大特點是與人們的日常生活密切聯(lián)系。而本節(jié)課的內容主要包括概率的定義和用頻率估計概率的方法,安排1課時完成。本節(jié)課的學習,將為后面學習古典概型和用列舉法求等可能性事件的概率打下基礎,同時也為學生體會概率和統(tǒng)計之間的聯(lián)系打下基礎,在教材中處于非常重要的位置。2、學情分析:本節(jié)課的授課對象是高二(2)班的會計專業(yè)的學生,女生偏多。學生數(shù)學基礎較好。學生思維活躍,善于交流,動手操作能力強,對上節(jié)課的必然事件、隨機事件、不可能事件知識已經(jīng)理解并掌握,表現(xiàn)欲強。這些特點為本堂課的有效教學提供了質的保障。
設計意圖:最后是當堂訓練,目標檢測,這一環(huán)節(jié)要盡量讓學生獨立完成,使訓練高效,在學生訓練時教師要巡回輔導,重點關注課堂表現(xiàn)不太突出的學生,由于本課時內容多,訓練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓練的時間預估不足。四、教學思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設符合學生實際的問題情境,讓學生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學生的應用意識及分析問題解決問題的能力,培養(yǎng)了學生的數(shù)學建模能力及轉化的思維方法。2.充分相信學生并為學生提供展示自己的機會,課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學生形成積極主動的求知態(tài)度。
(1)寫出平均每天銷售(y)箱與每箱售價x(元)之間的函數(shù)關系式.(注明范圍)(2)求出商場平均每天銷售這種牛奶的利潤W(元)與每箱牛奶的售價x(元)之間的二次函數(shù)關系式(每箱的利潤=售價-進價).(3)求出(2)中二次函數(shù)圖象的頂點坐標,并求當x=40,70時W的值.在坐標系中畫出函數(shù)圖象的草圖.(4)由函數(shù)圖象可以看出,當牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?解:(1)當40≤x≤50時,則降價(50-x)元,則可多售出3(50-x),所以y=90+3(50-x)=-3x+240.當50<x≤70時,則升高(x-50)元,則可少售3(x-50)元,所以y=90-3(x-50)=-3x+240.因此,當40≤x≤70時,y=-3x+240.(2)當每箱售價為x元時,每箱利潤為(x-40)元,平均每天的利潤為W=(240-3x)(x-40)=-3x2+360x-9600.
(三)解釋、應用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學生觀察、思考、建模、自行解決(3) 學生間討論交流后,教師展示部分學生的解答過程(重點關注:1.學生能否發(fā)現(xiàn)解決問題的途徑;學生在引導下,能否借助方程或方程組來解決問題;學生的自學能力.2.關注學生克服困難的勇氣和堅強的意志力。3.繼續(xù)關注學生中出現(xiàn)的典型錯誤。)(設計意圖: 讓學生進一步熟悉如何將實際問題轉化成數(shù)學模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學生的應用意識和應用能力。
至此,估計學生基本能夠掌握定理,達到預定目標,這時,利用提問形式,師生共同進行小結。五、幾點說明1、板書設計:為了使本節(jié)課更具理論性、邏輯性,我將板書設計分為三部分,第一部分為圓的軸對稱性,第二部分為垂徑定理,第三部分為測評反饋區(qū)(學生板演區(qū))。2、由于垂徑定理在圓一章中的重要性,所以這節(jié)課只講了定理而沒有涉及逆定理。3、設計要突出的特色:為了給學生營造一個民主、平等而又富有詩意的課堂,我以新數(shù)學課程標準下的基本理念和總體目標為指導思想,在教學過程中始終面向全體學生,依據(jù)學生的實際水平,選擇適當?shù)慕虒W起點和教學方法,充分讓學生參與教學,在合作交流的過程中,獲得良好的情感體驗。通過“實驗--觀察--猜想--證明”的思想,讓每個學生都有所得,我注意前后知識的鏈接,進行各學科間的整合,為學生提供了廣闊的思考空間,同時讓學生利用所學知識解決實際問題,感受理論聯(lián)系實際的思想方法。
注意強調概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學生求∠A,∠B的正切及時強化學生對概念的3、正切函數(shù)的應用理解通過實際問題的解答進一步了解梯子的傾斜程度、坡度與正切函數(shù)的關系;對學生進行正切的變式訓練,讓學生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習的安插注意梯度,讓不同的學生有不同的發(fā)展。4、最后小結本節(jié)課的知識要點及注意點五、達標測試具體思路:把幾個問題分為四個等級,方便對學生的了解;通過評價讓學生對自己的學習也做到心中有數(shù)。
設計說明:設計這組測驗為了反饋學生學習情況,第1題較簡單,也是為了讓提高學生學習士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學生的不同需求.教師可們采用搶答方式調動學生積極性,學生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習題A組1,2,3; B層 習題B組.設計說明:設計第1題的原因保證了知識的完整性,學生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應用了新學知識,又給學生提供了更廣泛地思考空間.第2題,主要是讓學生進一步鞏固新學知識,規(guī)范解題步驟. 在作業(yè)設計時,既面向全體學生,又尊重學生的個體差異,以掌握知識形成能力為主要目的.
(設計意圖:因為圓中有關的點、線、角及其他圖形位置關系的復雜,學生往往因對已知條件的分析不夠全面,忽視某個條件,某種特殊情況,導致漏解。采用小組討論交流的方式進行要及時進行小組評價。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設計意圖:通過練習,使學生能靈活運用圓周角定理進行幾何題的證明,規(guī)范步驟,提高利用定理解決問題的能力。)(三)說小結首先,通過學生小組交流,談一談你有什么收獲。(提示學生從三方面入手:1、學到了知識;2、掌握了哪些數(shù)學方法;3、體會到了哪些數(shù)學思想。)然后,教師引導小組間評價。使學生對本節(jié)內容有一個更系統(tǒng)、深刻的認識,實現(xiàn)從感性認識到理性認識的飛躍。(四)、板書設計為了集中濃縮和概括本課的教學內容,使教學重點醒目、突出、合理有序,以便學生對本課知識點有了完整清晰的印象。我只選擇了本節(jié)課的兩個知識點作為板書。
設計意圖這一組習題的設計,讓每位學生都參與,通過學生的主動參與,讓每一位學生有“用武之地”,深刻體會本節(jié)課的重要內容和思想方法,體驗學習數(shù)學的樂趣,增強學習數(shù)學的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導學生進行課堂小結,給出下列提綱,并就學生回答進行點評。(1)通過本節(jié)課的學習,你學會了哪些判斷直線與圓位置關系的方法?(2)本節(jié)課你還有哪些問題?(學生活動)學生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習8.4.41、2題(2)實踐調查:尋找圓與直線的關系在生活中的應用。設計意圖通過讓學生課本上的作業(yè)設置,基于本節(jié)課內容和學生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎鞏固題、理解題和拓展探究題。使學生完成基本學習任務的同時,在知識拓展時起激學生探究的熱情,讓每一個不同層次的學生都可以獲得成功的喜悅。
通過與學生講解切線長定義,讓學生在參與、合作中有一個猜想,再進一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學的方法加以證明。問題的解決,使學生既能解決新的問題,同時應用到全等、切線的性質等知識,同時三條輔助線中,兩條運用切線性質添加、一條構造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應用新知加深理解通過前面的學習學生們已經(jīng)對切線長定理有了較深刻的了解。為了加深學生對定理的認識并培養(yǎng)學生的應用意識學習例1、例2。例1讓學生自己獨立完成,加深對切線長定理的理解,老師進行點評,對于例2,由師生共同分析完成,交進行示范板書。(4) 鞏固與提高此訓練題分為二個層次,目的在于鞏固新學的定理,并將所學的定理應用到舊的知識體系中,使學生的知識體系得到補充和完善。(5) 歸納與小結通過小結,使知識成為系統(tǒng)幫助學生全面理解,掌握所學的知識。
5、課本練習:P129引導學生運用隨機數(shù)表來模擬試驗過程并給予解答。問題2:有四個鬮,其中兩個分別代表兩件獎品,四個人按順序依次抓鬮來決定這兩件獎品的歸屬,先抓的人中獎率一定大嗎?教法:可組織學生用試驗的方法來說明問題,對于試驗的結果是有說服力的,很容易使學生相信摸獎的次序對中獎的概率沒有影響。問題3:彩民甲研究了近幾期這種體育彩票的中獎號碼,發(fā)現(xiàn)數(shù)字06和08出現(xiàn)的次數(shù)最多,他認為,06和08是“幸運號碼”,因此,他在所買的每一注彩票中都選上了06和08。你認為他這樣做有道理嗎?教法說明:要讓學生看到試驗方法對試驗結果的影響:1、 因為開獎用的36個球是均勻的、無差別的,所以每個號碼被選為中獎號碼的可能性是一樣的,不存在“幸運號碼”。
教學過程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書設計 (一)、新課引入教師提問:一個直角三角形中,一個銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關系?____________________;【設計意圖】回顧上節(jié)課所學的內容,便于后面教學的開展。 (二)、探究新知活動一、探索特殊角的三角函數(shù),并填寫課本表格[問題] 1、觀察一副三角尺,其中有幾個銳角?它們分別等于多少度? [問題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問題] 3、cos30°等于多少?tan30°呢? [問題] 4、我們求出了30°角的三個三角函數(shù)值,還有兩個特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
本節(jié)課的設計是以教學大綱和教材為依據(jù),遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生們大膽猜想,小心求證的科學研究的思想。本節(jié)課采用教具輔助教學,旨在呈現(xiàn)更直觀的形象,提高學生的積極性和主動性,并提高課堂效率。2、學法研究“贈人以魚,不如授人以漁”,最有價值的知識是關于方法的知識,首先教師應創(chuàng)造一種環(huán)境,引導學生從已知的、熟悉的知識入手,讓學生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領域,從不同角度去分析、解決新問題,通過基礎練習、提高練習和拓展練習發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘學生的創(chuàng)新精神。
第一道例題提示學生把地基看成一個幾何圖形,即正六邊形,逐步引導學生完成例題的解答。例題1:有一個亭子它的地基是半徑為4米的正六邊形,求地基的周長和面積(精確到0.1平方米)。第二道例題,我讓學生獨立完成,我在下面巡視,個別輔導,同時我將關注不同層次學生對本節(jié)知識的理解、掌握程度,及時調整教學。最后,引導學生總結這一類問題的求解方法。這兩道例題旨在將實際問題轉化成數(shù)學問題,將多邊形化歸成三角形來解決,體現(xiàn)了化歸思想的應用。(七)、課堂小結(1)學完這節(jié)課你有哪些收獲?(八)布置作業(yè):我針對學生素質的差異設計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。
當然,在討論的過程中,對個別學生要及時點撥利用相似三角形對應邊的關系來求AD,至于S與x的關系式自然是水到渠成了。接著讓同學們以小組為單位,派出代表展示自己的討論成果。然后我進一步拋出重點問題3)這里S與x是一種什么函數(shù)關系?當x 取何值時,S的值最大?最大值是多少?這個例題和剛才的做一做非常相似。那么要求矩形的面積 就必須知道矩形的長和寬,通過學生的思考、討論、大家都明白了S與x的關系一定是二次函數(shù),要求面積的最大值,也就是求二次函數(shù)的最大值,這樣就將實際問題轉化為數(shù)學問題了.簡單的小組交流過后,同學們爭先恐后表達自己的觀點:有的小組利用的是配方法,有的小組直接利用二次函數(shù)的頂點坐標求出了最大面積。 ,我及時的鼓勵學生:大家真的很棒,老師為你們驕傲,請再接再厲。